首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miniature end-plate potentials were used in studying severalaspects of the neuromuscular systems in the cockroach femur.The similar sizes and time courses of miniatures associatedwith fast and slow type excitatory axons suggest that they employthe same transmitter. There is other evidence also indicatingthat the essential difference between these two excitatory systemsis in the number of packets of transmitter released per nerveimpulse rather than different transmitter substances. From theshapes of miniatures it was suspected that typical muscle fibersmight have a branching structure. This was confirmed by histologicalexamination, intracellular stimulation, and intracellular dyeinjection. That inhibitory transmission is quantal is indicatedby hyperpolarizing miniatures which occur at random time intervals.Inhibitory transmission can be made to fail and recover in astepwise manner by manipulating the Ca/Mg ratio. In studiesof toxins which affect transmitter release at vertebrate motorend-plates, botulinal toxin was found to be without effect ateither excitatory or inhibitory junctions in cockroach muscle.However, black widow spider venom acted as it does in vertebrates,promoting massive release of transmitters and then permanentinactivation of the junctions.  相似文献   

2.
The effect of nitric oxide donor sodium nitroprusside on the end-plate currents was studied under two-electrode voltage-clamp condition at frog neuro-muscular junction. Sodium nitroprusside (10(-4) M) reduced to the half the amplitude of end-plate currents while did not change miniature end-plate currents indicating the presynaptic nature of end-plate depression. In keeping with such suggestion sodium nitroprusside essentially (to 33%) suppressed the frequency of miniature end-plate currents but did not affect the decay time constant and voltage-dependence of miniature end-plate decay. In contrast to another presynaptic inhibitors sodium nitroprusside rather reduced than increased the presynaptic facilitation and did not change postsynaptic potentials. Thus, nitric oxide is the powerful inhibitor of both evoked and spontaneous transmitter release and did not change postsynaptic potential.  相似文献   

3.
Binomial parameters of transmitter secretion were calculated on the basis of analysis of synaptic potentials in the frog sartorius muscle. Negative values of the parameter p were found in some synapses. This happened most often in low Ca2+ concentrations and with low amplitude of miniature end-plate potentials. The results were interpreted in terms of a model assuming spatial heterogeneity of probability of transmitter quantum release at different release points. Simulation of transmitter secretion by computer showed that the appearance of negative values of the parameter p and incorrect estimates of n experimentally are connected with the form of distribution of probability of transmitter quantum release in the synapse and with the amplitude of miniature potentials.S. V. Kurashov Kazan' Medical Institute, Ministry of Health of the RSFSR. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 182–189, March–April, 1984.  相似文献   

4.
施玉梁  徐幼芬 《生理学报》1991,43(3):286-290
By means of the intracellular recording technique, the effect of aureofuscin (20 micrograms/ml, oversaturation solution) on the ACh release from motor nerve terminals and on muscle cell membrane potential were investigated in phrenic nerve diaphragm preparations of the mice. The results showed that (a) aureofuscin reduced the resting membrane potential of the muscle cell slightly; (b) the frequency of miniature end-plate potentials and the mean quantal content of end-plate potentials increased at first and then recovered approximately to the control level; (c) the depolarization produced by aureofuscin in the muscle cell membrane was reversible and the aureofuscin-invoked facilitation in miniature end-plate potential discharges was Ca(2+)-dependent; and (d) aureofuscin did not block neuromuscular transmission.  相似文献   

5.
IT is generally accepted that botulinum toxin entirely blocks transmitter release from motor nerve terminals without affecting nerve conduction or the sensitivity of the muscle membrane to acetylcholine. In particular, it has been reported that with both acute and chronic intoxication with type A botulinum, miniature end-plate potentials (m.e.p.p.s.) disappear completely from a muscle at about the time that transmission is blocked1,2. The action of botulinum toxin has been reinvestigated following acute application of toxin to the rat diaphragm in vitro and chronic paralysis of rat soleus muscle following a single intramuscular injection of toxin; miniature potentials have been observed to persist following blockade of neuromuscular transmission.  相似文献   

6.
The effects of imidazole, guanidine, and theophylline on spontaneous (frequency of miniature end-plate potentials) and evoked (quantum composition of end-plate potentials) transmitter release were compared in isolated sartorius muscles ofRana temporaria at different temperatures and during changes in the calcium concentration in the external solution. All three substances increased the quantum composition of the end-plate potentials and the frequency of the miniature end-plate potentials at 20°C and in 0.5 mM calcium. As regards their effect on the quantum composition the substances could be arranged in the following order: imidazole guanidine theophylline; as regards their effect on frequency: theophylline imidazole guanidine. Theophylline increased spontaneous release, whereas imidazole and guanidine increased evoked transmitter release more than the rest. Comparison of the effect of these substances at 20 and 7°C showed that only the action of theophylline on spontaneous release depends on temperature. The effect of imidazole and theophylline on frequency was independent of the calcium concentration in the medium. Differences in the mechanism of action of these compounds on spontaneous and evoked acetylcholine release are discussed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 430–436, July–August, 1977.  相似文献   

7.
Homogenates of venom glands of brown widow spiders caused the release of packets of acetylcholine, observed as miniature end-plate potentials (mepps), from nerve terminals in sartorius and cutaneous pectoris muscles of the frog, even though the appearance of mepps which is normally induced by depolarization of the presynaptic membrane had been completely blocked by prior treatment with type A botulinum toxin (BotTX). The distribution of the amplitudes of the recorded mepps resembled that of the mepps in normal muscle and was quite different from the heavily skewed (to the left) distribution of the mepps recorded from BotTX-treated muscles. This suggests that the mepps elicited by brown venom glands homogenates in muscles blocked by BotTX were due to the release of a population of vesicles which is unaffected by BotTX and which is also released on hyperpolarization of nerve terminals.  相似文献   

8.
The process of transmitter release has been statistically analysed with the use of a rat phrenic nerve-diaphragm preparation in which spontaneous transmitter secretion had been changed by ouabain, 4-aminopyridine and tetanus toxin. In all cases significant deviations of the statistics of miniature end-plate potentials (MEPP) impulse flows from Poisson process and amplitude distributions of MEPP from normal have been obtained. By the statistical characteristics two groups of processes have been distinguished: 1) normal and ouabain where certain consistency of the processes suggests the organization of transmitter release sites and 2) 4-aminopyridine and tetanus toxin where the temporary characteristics of the process in conjunction with the appropriate transformation of MEPP amplitude distribution apparently suggests breakdown of the mechanism of spontaneous synchronization of transmitter quanta release.  相似文献   

9.
The number of quantal transmitter packets (m), released from motor nerve terminals in response to a single stimulus, has been estimated from the ratio of the amplitudes of endplate currents (e.p.c.) to spontaneous miniature endplate currents (m.e.p.c.), in voltage-clamped endplates of the frog. At 6 degrees C, the average value of m at normal nerve-muscle junctions was about 300. If allowance is made for the temporal dispersion of quantal transmitter release during the e.p.c., this value is increased by about 30%. After treatment with diaminopyridine or tetraethylammonium, transmitter release in response to a nerve stimulus is greatly enhanced and values of m exceeding 10(4) are frequently found. Moreover, the duration of the e.p.c. becomes much longer than that of the m.e.p.cs. The number of packets then liberated during the e.p.c. is much larger than the number of 'active zones' of the endplate and may even exceed the total number of vesicles lined up in twin-files adjacent to the presynaptic membrane.  相似文献   

10.
1. The effects of ATP in the presence of theophylline and imidazole were investigated on the twitch tension of a partially magnesium blocked rat phrenic nerve-diaphragm preparation. Both theophylline and imidazole facilitate the neuromuscular transmission and prevent the effects of ATP. 2. The effects of adenosine in solutions with low calcium concentrations in the frog-sartorius and in solutions with very low calcium concentrations in the rat-diaphragm were studied on the miniature end-plate potentials. Adenosine caused a similar reduction of the frequency of the miniature end-plate potentials in both low and very low calcium concentrations. 3. The results are discussed in relation to the cyclic AMP and calcium hypothesis.  相似文献   

11.
Sensitivity of the postsynaptic chemoreceptive membrane of the frog sartorius muscle fiber to acetylcholine was studied during the development of a block to neuromuscular transmission in the course of prolonged indirect low-frequency stimulation. Calculation of the mean amplitude of miniature end-plate potentials, measurement of the input resistance of the electrogenic membrane of the muscle fiber, and application of acetylcholine to the postsynaptic membrane showed that sensitivity of the postsynaptic membrane to mediator is unchanged at the time of onset of the neuromuscular block. A decrease in amplitude of the end-plate potentials during development of fatigue is due to a reduction in their quantum composition, consequent upon negative antidromic influences from the muscle on motor nerve endings, with the participation of chemical agents formed in the muscle during the activity of its contractile system.  相似文献   

12.
Exogenous adenosine reduced the amplitude of multiquantal end-plate currents due to a depressant action on transmitter release. Theophylline did not change the amplitude of end-plate currents under low-rate motor nerve stimulation. The findings suggest a possibility of both tonic and phasic inhibitory actions of endogenous adenosine on transmitter release when utilization of this purine in synaptic cleft is inactivated.  相似文献   

13.
Examination of miniature end-plate potentials (m.e.p.ps) in rat skeletal muscle poisoned in vivo by botulinum toxin type A reveals the presence of two populations of potentials. One population which corresponds to m.e.p.ps in unpoisoned muscles and to quantal end-plate potentials. The frequency of these m.e.p.ps is greatly reduced by botulinum toxin. The second population of m.e.p.ps has quite different characteristics. These m.e.p.ps have a more variable, but generally much larger amplitude, and their time to peak is longer than normal m.e.p.ps. The frequency of these m.e.p.ps increases during poisoning and reaches 0.3-1 Hz after 10-14 days. In addition to the variability in amplitude and time-to-peak these m.e.p.ps differ from those at unpoisoned junctions by being unaffected by procedures which alter extra- or intracellular Ca2+ concentrations. The appearance of this Ca2+-insensitive spontaneous quantal secretion of acetylcholine is apparently not a direct effect of the toxin but secondary to blockade of impulse transmission since it also appears at unpoisoned end-plates when transmission is impaired for other reasons. Procedures which increase the intracellular Ca2+ concentration in nerve terminals restore transmitter release from botulinum toxin poisoned nerves. Furthermore, the block caused by the toxin is very temperature-dependent, a reduction in temperature relieving the block. Since presynaptic Ca2+ currents are unaltered by the toxin it is proposed that the block of transmission is due to a reduction in the calcium content of the nerve terminal to a level where the amount of Ca2+, which normally enters, is insufficient to activate transmitter release.  相似文献   

14.
Physiological properties of nerve-muscle junctions were studied in intercostal muscles of rat embryos of 13 to 21 days gestation and in neonates. Nerve bundles grew into the muscle region by Day 13 of gestation. Myotubes began to appear on Days 13–14. Myotubes were electrically coupled before birth, allowing the spread of depolarization laterally between fibers. The strength of coupling declined with embryonic age and disappeared after birth. At early times, some fibers of adjacent segments were also coupled, end to end. Resting potentials of myotubes were high (70–90mV) from the time of their appearance. Miniature end-plate potentials were recorded in some myotubes on Day 14 of gestation. At that time also, nerve stimulation could evoke an end-plate potential which was capable of triggering muscle contraction. The mean quantal content of transmitter released from individual terminals was small compared to that in adult muscle; it remained small through the first postnatal week. Individual myofibers had a single end-plate site near their center, which could receive as many as six distinct synaptic inputs. The number of inputs per fiber reached a peak at Day 17 of gestation, and then began to decline before birth, reaching its adult value of one input per fiber within the second postnatal week. The internal intercostal muscles contained about 30 motor units, each confined to a small zone in the muscle. The region occupied by a single motor unit was not obviously reduced in size as the number of synaptic inputs per fiber declined. At Day 17 of gestation 40% of the muscles contained one or more aberrant motor units, the parent axons of which projected out through the ventral roots of adjacent segments. Elimination of these units commenced at the same time as did the reduction in number of synaptic inputs to single myofibers, and 70% of the aberrant units were eliminated before birth.  相似文献   

15.
The effects of nicardipine, a dihydropyridine Ca2(+)-channel antagonist, on neuromuscular transmission and impulse-evoked release of acetylcholine were compared with those of nifedipine. In the isolated mouse phrenic nerve diaphragm, nicardipine (50 microM), but not nifedipine (100 microM), induced neuromuscular block, fade of tetanic contraction, and dropout or all-or-none block of end-plate potentials. Nicardipine had no significant effect on the resting membrane potential and the amplitude of miniature end-plate potentials but increased the frequency and caused the appearance of large size miniature potentials. The quantal contents of evoked end-plate potentials were increased. In the presence of tubocurarine, however, nicardipine depressed the amplitude of end-plate potentials. The compound nerve action potential was also decreased. It is concluded that nicardipine blocks neuromuscular transmission by acting on Na+ channels and inhibits axonal conduction. Nicardipine appeared to affect the evoked release of acetylcholine by dual mechanisms, i.e., an enhancement presumably by an agonist action on Ca2+ channels, like Bay K 8644 and nifedipine, and inhibition by an effect on Na+ channels, like verapamil and diltiazem. In contrast with its inactivity on the amplitude of miniature end-plate potentials, depolarization of the end plate in response to succinylcholine was greatly depressed. The contractile response of baby chick biventer cervicis muscle to exogenous acetylcholine was noncompetitively antagonized by nicardipine (10 microM), but was unaffected by nifedipine (30 microM). These results may implicate that nicardipine blocks the postsynaptic acetylcholine receptor channel by enhancing receptor desensitization or by a use-dependent effect.  相似文献   

16.
Spontaneous synaptic potentials and their relation to the end-plate potential (e.p.p.) are studied. It has been suggested earlier that the e.p.p. at a single nerve-muscle junction is built up statistically of small all-or-none units which are identical in size with the spontaneous miniature end-plate potentials (m.e.p.p.'s). In this paper, a more general theory is developed which takes into account latency fluctuations of the unit components. A general equation for e.p.p. amplitude probability distribution is derived. This probability distribution is a function of the latency distribution, m.e.p.p.'s pulse shape, m.e.p.p.'s amplitude distribution, and the mean quantal content. The time course of transmitter release, or latency distribution, is derived from a histogram of synaptic delays in a frog muscle, but obtained equations can be used for other distribution functions as well.  相似文献   

17.
A computerized data acquisition system for on-line analysis of the parameters of neuromuscular transmission is described. Both hardware usage and software methodologies are discussed with regard to sampling in real-time and analyzing miniature end-plate potentials (MEPPs), end-plate potentials (EPPs) and quantal content of the evoked transmitter release. Significant features of the program include: (1) automatic threshold determination for MEPP detection; (2) the use of a circular buffer to give pre-trigger information; (3) real-time noise spike rejection; (4) an automatic procedure for EPP failure detection; (5) rapid quantal content determinations by several methods as well as complete MEPP and EPP waveform analysis. The system has proven both accurate and reliable during more than two years of use. Advantages of the system over conventional methods include: (1) increased accuracy and efficiency in data analysis; (2) immediate availability of results; (3) conventional data storage; (4) flexibility to meet changing requirements.  相似文献   

18.
In experiments on the frog motor nerve endings of cutaneous pectoris muscle using fluorescent microscopy it has been shown that initiation of massive transmitter release of synaptic vesicles by high potassium solutions in using endocytotic marker FM 1-43 at the nerve terminals light spots occurred only at some of the nerve terminals or at the some parts of nerve terminal. It has been revealed that application of caffeine increased the number of light terminals. Using extracellular microelectrode recording, we showed that both high potassium solutions and caffeine increased frequency of miniature end-plate potentials in a dose-dependent manner. However, high potassium solutions always increased the frequency of spontaneous transmitter release while caffeine increased it only in some experiments. It was concluded that processes of exo- and endocytosis can be caused both by entry of Ca ions at the nerve ending during depolarization (high potassium solutions) and by Ca release from endoplasmic reticulum (caffeine). Possible spatial localization of endoplasmic reticulum at the motor nerve ending is discussed. The hypothesis of its role at the remodeling of synapse was proposed.  相似文献   

19.
The question of effect of muscle membrane capacitance on Martin's correction of end-plate potential amplitudes for nonlinear summation of unit potentials was examined. By addition of capacitance to the membrane circuit model which serves as the basis for the correction, it is demonstrated through use of the appropriate circuit equations that the correction is unaffected by capacitance.  相似文献   

20.
Dependence of the amplitude of miniature end-plate currents on frequency of spontaneous quantal release modulated by the elevation of K+ concentration was studied in the frog voltage clamped neuromuscular junctions. A sharp increase of mEPC frequency (not less than approximately 50 per sec) was followed by an obvious fall in both their amplitude and acceleration of decay only in the presence of 3 microM prostigmine (acetylcholinesterase inhibitor) and 5 microM proadiphene, these agents promoting a desensitization of cholinergic postsynaptic membrane. Probable depletion of transmitter store is not involved in the phenomenon observed which is mainly due to the repetitive activation of the postsynaptic zones and the increase of the desensitized cholinoreceptor number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号