首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Probiotics, defined as living bacteria that are beneficial for human health, mainly function through their immunomodulatory abilities. Hence, these microorganisms have proven successful for treating diseases resulting from immune deregulation. The aim of this study was to find novel candidates to improve on and complement current probiotic treatment strategies. Of 60 lactic acid bacterial strains that were isolated from fecal samples of healthy, full‐term, breast‐fed infants, three were chosen because of their ability to activate human immune cells. These candidates were then tested with regard to immunomodulatory properties, antimicrobial effects on pathogens, required pharmacological properties and their safety profiles. To identify the immunomodulatory structures of the selected isolates, activation of specific innate immune receptors was studied. The three candidates for probiotic treatment were assigned Enterococcus faecium NM113, Enterococcus faecium NM213 and Lactobacillus casei NM512. Compared with the established allergy‐protective strain Lactococcus lactis G121, these isolates induced release of similar amounts of IL‐12, a potent inducer of T helper 1 cells. In addition, all three neonatal isolates had antimicrobial activity against pathogens. Analysis of pharmacological suitability showed high tolerance of low pH, bile salts and pancreatic enzymes. In terms of safe application in humans, the isolates were sensitive to three antibiotics (chloramphenicol, tetracycline and erythromycin). In addition, the Enterococcus isolates were free from the four major virulence genes (cylA, agg, efaAfs and ccf). Moreover, the isolates strongly activated Toll‐like receptor 2, which suggests lipopeptides as their active immunomodulatory structure. Thus, three novel bacterial strains with great potential as probiotic candidates and promising immunomodulatory properties have here been identified and characterized.  相似文献   

2.
AIMS: Considering the significant rise in the probiotic market in Columbia, and given the lack of reports concerning the microbial population and strain performance in products from different producers, this study aims at determining the number of viable starter bacteria and probiotics in bio-yoghurts available at the Columbian market, identifying the species and analysing the performance of the isolated strains in bile acid resistance, antagonistic activity against pathogens, and adherence capacity to human intestinal epithelial cells. METHODS AND RESULTS: Seven bio-yoghurts were analysed for the bacterial species present. Species identification was carried out using 16S rRNA gene targeted PCR. The cultured bacteria were tested for bile acid resistance, adherence to a human intestinal epithelial cell line, and antagonism against the pathogen Salmonella enterica serovar Typhimurium. A total of 17 different strains were identified. Based on plate counting, all bio-yoghurts have at least total viable cells of approximately 10(7) CFU ml(-1). Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus were the most frequently isolated bacteria. Viable Bifidobacterium was only recovered from one product. However, after PCR analysis, DNA of this genus was confirmed in five out of seven products. Major differences were found for S. typhimurium antagonism. The adherence capacity to Caco-2 cells was observed in 10 of the isolated strains. In general, low survival to simulated gastric juice was observed. CONCLUSIONS: Some of the isolated strains have probiotic potential, although not all of them were present in the advised amount to exert beneficial health effects. However, the full correct scientific name of the isolated bacteria and their viable counts were not included on the product label. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report describing the identification and functionality of starter bacteria and probiotics present in dairy products on the Columbian market.  相似文献   

3.
Probiotics: an overview of beneficial effects   总被引:45,自引:0,他引:45  
Food products fermented by lactic acid bacteria have long been used for their proposed health promoting properties. In recent years, selected probiotic strains have been thoroughly investigated for specific health effects. Properties like relief of lactose intolerance symptoms and shortening of rotavirus diarrhoea are now widely accepted for selected probiotics. Some areas, such as the treatment and prevention of atopy hold great promise. However, many proposed health effects still need additional investigation. In particular the potential benefits for the healthy consumer, the main market for probiotic products, requires more attention. Also, the potential use of probiotics outside the gastrointestinal tract deserves to be explored further. Results from well conducted clinical studies will expand and increase the acceptance of probiotics for the treatment and prevention of selected diseases.  相似文献   

4.
5.
6.
7.
The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.  相似文献   

8.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   

9.
Few studies exist dealing with the probiotic activity of lactococci, which are commonly used as starter bacteria in the manufacture of many kinds of fermented dairy products. Fifteen strains of the genus Lactococcus were examined for their probiotic activities, such as immunomodulatory effects. Six strains induced the production of cytokines (IL-12, IL-6, and TNF-alpha) in macrophage-like cell line J774.1, and the highest induction was observed with Lactococcus lactis subsp. lactis G50. The cytokine induction in the J774.1 cell line was almost entirely sustained after heat-killing of the strain. Spleen cells from BALB/c mice fed G50 culture produced more IL-12 and IFN-gamma and slightly less IL-4 and IL-6 than the control (i.e., without strain G50), indicating that strain G50 can enhance Th1-type immune response in vivo. The effect of the oral administration of strain G50 on antibody response in mice was also investigated. Mice were immunized with ovomucoid (OVM), a potent egg allergen, and the antibody level in the serum was then determined. The total IgE antibody level in the group treated with strain G50 was significantly lower than that of the control. The response of OVM-specific IgG1 and IgE antibodies tended to be low in the group that was administered strain G50, compared with the response of the control group. These results suggest that strain G50 has an ability to suppress the Th2 response. Thus, Lactococcus lactis subsp. lactis G50 is a potential probiotic strain for the suppression of hypersensitive reactions caused by the Th2 response.  相似文献   

10.
益生菌的安全性   总被引:1,自引:0,他引:1  
益生菌是指一类活的,摄入足够量就能够对人体产生有益作用的微生物,目前广泛应用于食品发酵、工业乳酸发酵以及医疗保健领域.随着市场上商品化益生菌的不断出现,它所带来的安全性问题也更加引起人们的关注.目前益生菌主要存在四个方面的安全问题:致病性和感染能力;有害的代谢活动:过度的免疫反应和可能的基因转移.传统的益生菌安全性评价方法具有一定的局限性.我们需要针对目前益生菌安全性存在的问题建立一套包含基因组学,代谢组学,蛋白质组学等研究内容的评估方法,对益生菌的安全性进行系统全面的评估.本文总结了一些对于益生菌安全性的研究进展和研究方法,以提示我国应尽快完善益生菌及其制品的安全性评价方法指标并建立安全性评价体系,使益生菌更好的为人们的健康服务.  相似文献   

11.
AIMS: To identify and examine the diversity of predominant lactic acid bacteria (LAB) in koko and koko sour water (KSW) from different Ghanaian production sites with regard to pattern of fermentation (API 50 CHL), genotype, antimicrobial activity, and resistance to low pH and bile salts. METHODS AND RESULTS: In total 215 LAB were isolated from koko and KSW. The isolates were identified using intergenic transcribed spacers (ITS)-PCR restriction fragment length polymorphism (RFLP), API 50 CHL, restriction enzyme analysis with pulsed-field gel electrophoresis (REA-PFGE) and sequencing of the 16S rRNA gene. The dominating micro-organisms in koko was found to be Weisella confusa and Lactobacillus fermentum, followed by Lact. salivarius and Pediococcus spp. Chemometric data analysis were used to link the LAB species to the different production stages and production sites. At intra-species level the isolates were found to have a great diversity. The isolates were investigated for antimicrobial activity using agar diffusion assays, and acid and bile tolerance. Most isolates showed low levels of antimicrobial activity towards the indicator strain Listeria innocua, but not towards the bacteriocin-sensitive Lact. sakei. Growth of all LAB isolates was unaffected by the presence of 0.3% (v/v) oxgall bile. The isolates were able to survive, but were not able to grow in growth medium adjusted to pH 2.5. CONCLUSIONS: The dominating LAB of koko and KSW were W. confusa and Lact. fermentum showing a pronounced taxonomic biodiversity at sub-species level between stages within the production as well as between production sites. Other species observed in KSW were Lact. salivarius, Ped. pentosaceus, Ped. acidilactici and Lact. paraplantarum. They occurred in levels of 108 CFU ml-1 in fresh KSW and showed uniform antimicrobial activity, and acid and bile tolerance. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study gives a detailed picture of the taxonomy and diversity of LAB in an African-fermented millet product that may have potential as a probiotic product for the local population. The chemometric tools Principal Component Analysis and anova Partial Least Squares Regression were proven to be useful in the analysis of microbial groupings and associations with specific sites and stages in the production of koko and KSW.  相似文献   

12.
Breast milk is the combination of bioactive compounds and microflora that promote newborn’s proper growth, gut flora, and immunity. Thus, it is always considered the perfect food for newborns. Amongst their bioactives, probiotic communities—especially lactic acid bacteria (LAB)—are characterized from breast milk over the first month of parturition. In this study, seven LAB were characterized phenotypically and genotypically as Levilactobacillus brevis BDUMBT08 (MT673657), L. gastricus BDUMBT09 (MT774596), L. paracasei BDUMBT10 (MT775430), L. brevis BDUMBT11 (MW785062), L. casei BDUMBT12 (MW785063), L. casei BDUMBT13 (MW785178), and Brevibacillus brevis M2403 (MK371781) from human breast milk. Their tolerance to lysozyme, acid, bile, gastric juice, pancreatic juice, and NaCl and potential for mucoadhesion, auto-aggregation, and co-aggregation with pathogens are of great prominence in forecasting their gut colonizing ability. They proved their safety aspects as they were negative for virulence determinants such as hemolysis and biofilm production. Antibiogram of LAB showed their sensitivity to more than 90% of the antibiotics tested. Amongst seven LAB, three isolates (L. brevis BDUMBT08 and BDUMBT11, and L. gatricus BDUMBT09) proved their bacteriocin producing propensity. Although the seven LAB isolates differed in their behavior, their substantial probiotic properties with safety could be taken as promising probiotics for further studies to prove their in vivo effects, such as health benefits, in humans.  相似文献   

13.
AIMS: To apply a denaturing gradient gel electrophoretic (DGGE) method to quantify and profile individual strains during a mixed culture fermentation. METHODS AND RESULTS: DNA was extracted during the culture of lactic acid bacteria (LAB) and amplified in a multiple competitive PCR (cPCR) using general primers targeting 16S rDNA and DNA from Streptococcus salivarius as competitive DNA. Subsequently the 200-kb amplified fragments were separated by DGGE. The method was validated in pure cultures and used to profile a mixture of three LAB grown on glucose, soluble starch and glycogen from mussel processing waste. The inclusion of a starch- and glycogen-degrading strain (Lactobacillus plantarum) and a weakly amylotic nisin-resistant strain (Lact. paracasei) allowed proliferation of the nisin producing Lactococcus lactis which in itself is unable to grow on complex carbohydrates. cPCR-DGGE permitted the monitoring of a different strain succession on the different carbohydrates, related to amylolytic activity and substrate consumption, acid production and nisin production. CONCLUSIONS: cPCR-DGGE is a useful tool for profiling defined mixed cultures of bacteria and hence allows their interaction to be studied. SIGNIFICANCE AND IMPACT OF THE STUDY: Provided validation of the method for each specific case, it may be appropriate to monitor and control the reproducibility of any defined mixed culture of bacteria, with the advantage that an increase in the strain numbers to be monitored does not yield an increase in the labour of the procedure.  相似文献   

14.
Lactic acid bacteria (LAB) are found to occupy a variety of ecological niches including fermented foods as well as mucosal surfaces of humans and other vertebrates. This review is based on the genomic content of LAB that is responsible for the functional and ecological diversity of these bacteria. These genomes reveal an ongoing process of reductive evolution as the LAB have specialized to different nutritionally rich environments. Species-to-species variation in the number of pseudogenes as well as genes directing nutrient uptake and metabolism reflects the adaptation of LAB to food matrices and the gastrointestinal tract. Although a general trend of genome reduction was observed, certain niche-specific genes appear to be recently acquired and appear on plasmids or adjacent to prophages. Recent work has improved our understanding of the genomic content responsible for various phenotypes that continue to be discovered, as well as those that have been exploited by man for thousands of years.  相似文献   

15.
During the last decade, probiotic research has progressed considerably and significant advances have been made in the selection and characterization of specific probiotic strains. The most studied probiotics belong to the genus Lactobacillus. In this study, 80 Lactobacillus spp. isolated from healthy women tolerated low pH and were able to grow in the presence of bile salts. RAPD PCR technique resulted in the identification of 38 different types. These isolates were then evaluated based on adhesion capacity, antibiotic susceptibility and tolerance in simulated gastrointestinal tract. Species-specific PCR and detection of bacteriocin-related genes were also surveyed. Among the isolates, five strains—Lacticaseibacillus rhamnosus NO21, Lacticaseibacillus casei NO1, Lactiplantibacillus plantarum NO4, Lactobacillus acidophilus NO7 and Lactobacillus gasseri NO38presented acceptable antibiotic susceptibility pattern. Further analysis showed antimicrobial activity of Lacticaseibacillus culture against various bacterial pathogens and real-time PCR showed all five strains were able to prevent the colonization of bacterial pathogens. All five selected strains produced organic acids, hydrogen peroxide and were resistant to the spermicide. In addition, they lacked haemolytic activity with the ability of hydrophobicity, auto-aggregation and co-aggregation with pathogens. These results suggest that the vaginal microbiome could be a good source for the isolation of probiotics and the strains of this study may be considered as good probiotic candidates.  相似文献   

16.
In this study, the aim was to establish if loss of DNA integrity is a cause of loss of culturability for probiotic bacteria during storage in dry state. The number of colony forming units (CFU), number of metabolically active cells, and DNA integrity during dry storage of probiotic strains, B. animalis subsp. lactis BB‐12 and L. acidophilus LA‐5, were investigated. The probiotic strains were freeze‐dried and stored at 20°C, with and without oxygen present, and at water activity levels 0.22 or 0.32. Dry storage resulted in a decrease in CFU during the entire storage period. The number of metabolically active cells was unchanged during storage of B. animalis subsp. lactis BB‐12, but did decrease during the first week of storage of L. acidophilus LA‐5. Loss of DNA integrity was evident for both strains during storage and correlated well with the loss of CFU. Both loss of CFU and loss of DNA integrity were significantly greater for both strains when oxygen was present and when aw was increased. Statistical analysis indicates a possible causal relationship between DNA degradation and loss of culturability and this idea is consistent with the function of DNA at cell division. The study contributes with new knowledge of the cause for loss of CFU during dry storage of probiotic bacteria, which possibly can aid in the improvement of preservation techniques. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:231–242, 2018  相似文献   

17.
18.
19.
富硒益生菌的功效研究进展   总被引:1,自引:0,他引:1  
硒是人体必需的微量元素,对人体健康有重要作用。益生菌能够将硒元素转化为有机硒,降低硒的毒性,同时硒又提高了益生菌的生物活性,富硒益生菌具备了硒和益生菌的双重功效。本文主要综述了近年来富硒益生菌的功效,如抗氧化、抑制有害菌、调节肠道菌群、抗癌等。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号