首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
20,1% cells with chromosomes aberrations were obtained after UV-irradiation of embryonal fibroblasts of mice at the S-stage in vitro at a decreasing dose of 40erg/mm2. Subsequent gamma-irradiation at the metaphase of the first mitosis at a 5 krad dose led to a statistically significant decrease of the frequency of aberrant cells observed in the same mitosis down to 11,7%. The frequency of spontaneous aberrations did not change during the first few minutes after gamma-irradiation of intact cells at the metaphase. The "protective" effect of gamma-rays can not be explained either by unequal changes of the duration of mitotic stages for aberrant and normal cells, or by sticking of chromosome fragments or by breaks of bridges at the anaphase. The death of cells "under irradiation" also appears to be a hardly probable case of the effect observed. It is assumed that the decrease of the aberrations frequency is the result of predicted earlier modification of the processes of realization of potential chromosome damages into visible aberrations at the metaphase.  相似文献   

2.
An attempt was undertaken to modify the spontaneous mutation process by varying its conditions in somatic cells of different species and tissues. The rate of chromosome aberrations and their types were studied in anaphase and metaphase. Under normal conditions, chromosome breaks were only found to occur. Breakage of chromosomes occurs during interphase, and as a result, acentric fragments are located outside the equatorial plate during metaphase. This process of chromosome breakage leads to elimination of some genetic material, without concomitant exchanges, and therefore, it has been named "elimination" process. Spontaneous chromosome mutagenesis manifesting itself at cytogenetic level was concluded to be an elimination process directed to elimination of a portion of chromatin from chromosomes. When the conditions of spontaneous mutagenesis are altered, in particular, by cardiovascular diseases in man, by partial inhibition of DNA repair in mice and pea cells, by transformation of Chinese hamster cells, upon ageing of pea seeds-qualitative changes in the chromosomal aberrations are registered, connected with the appearance of chromosome exchanges and acentric fragments situated within the equatorial plate during metaphase. These two types of chromosome aberrations are proposed to be considered as new criteria of pathology. A system of processes was suggested to exist, preventing the appearance of aberrations during mitosis, and it is supposed to be one of the most significant homeostatic systems.  相似文献   

3.
Excised barley embryos were treated with methyl methanesulphonate and cultivatedin vitro in water or in a nutrient medium. The alkylating compound induced a high frequency of chromosome aberrations observed at anaphase and metaphase and depressed the mitotic division in the root-tips of excised embryos.  相似文献   

4.
The genetic implications of induced synaptonemal complex (SC) damage are not known. However, on theoretical grounds, such aberrations could be involved in mechanisms leading to potentially heritable defects. Cyclophosphamide (CP), a chemical reported to cause structural and numerical chromosomal aberrations in the mouse, was used to determine if SC damage observed in meiotic prophase is related to subsequent metaphase chromosomal aberrations. Male mice were injected i.p. with CP. In some instances, mice were also injected simultaneously with tritiated thymidine to label DNA so that cells could be tracked autoradiographically through spermatogenesis. Prophase, primary metaphase (M1), and secondary metaphase (M2) samples were sequentially harvested at appropriate times from the same individual, and nuclei were examined for aberrations. Correlation coefficients between SC and metaphase chromosome aberrations were calculated. The inclusion of tritium labeling increased the number and significance of positive correlations. Positive correlations were found between (1) dose-dependent total SC damage and damage to M1, and to a lesser extent, M2 chromosomes; (2) SC breaks/fragments and M1 chains/rings as well as isochromatid breaks/fragments; (3) SC asynapsis and M1 chromatid breaks/fragments; (4) SC multi-axial configurations and M1 chains/rings as well as isochromatid and chromatid breaks/fragments; and (5) SC multi-axial configurations and M2 hyperploidy. These correlations do not define mechanistic or causal relationships between SC and chromosomal damage. However, taken together with the observation that induced SC damage is many times greater than ensuing metaphase chromosome damage, they substantiate SC analysis as a highly sensitive indicator of potentially heritable effects of this (and presumably other) genotoxic agents.  相似文献   

5.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

6.
This study demonstrated that freeze-dried mouse spermatozoa possess strong resistance to 137Cs gamma-ray irradiation at doses of up to 8 Gy. Freeze-dried mouse spermatozoa were rehydrated and injected into mouse oocytes with an intracytoplasmic sperm injection (ICSI) technique. Most oocytes can be activated after ICSI by using spermatozoa irradiated with gamma-rays before and after freeze-drying. Sperm chromosome complements were analyzed at the first cleavage metaphase. Chromosome aberrations increased in a dose-dependent manner in the spermatozoa irradiated before freeze-drying. However, no increase in oocytes with chromosome aberrations was observed when fertilized by spermatozoa that had been irradiated after freeze-drying, as compared with freeze-dried spermatozoa that had not been irradiated. These results suggest that both the chromosomal integrity of freeze-dried spermatozoa, as well as their ability to activate oocytes, were protected from gamma-ray irradiation at doses at which chromosomal damage is found to be strongly induced in spermatozoa suspended in solution.  相似文献   

7.
The influence of colchicine-hypotonic treatment on interchromosomal aberrations at metaphase was studied in bone marrow cells of BALB mice irradiated by X-rays within the dose range from 0.25 to 1.50 Gy. In was found that after 30 min treatment with 0.002% colchicine of cells dividing 10 h following irradiation, the frequency both of chromosomal exchanges and interchromosomal contacts decrease about 3.5 times, the amount of chromosomal breaks increasing. It is calculated from the data of this experiment that two breaks induced by irradiation, which were scored at the same K metaphase as independent ones, appeared to be associated with each other at high frequency through exchange in the absence of colchicine or hypotonic treatment. It is assumed that regions of interchromosomal contacts at native metaphase are the most radiation-sensitive zones of the genome preferentially involved in chromosomal aberrations of X-irradiated cells.  相似文献   

8.
The induction of chromosome aberrations in mouse eggs by exposure to HTO beta-particles and 60Co gamma-rays at the early pronuclear stage was examined at the first-cleavage metaphase by using an in vitro fertilization technique. Eggs at the pronuclear stage were exposed to beta-particles in a chemically defined medium containing tritiated water (HTO) for 2 h at 3-5 h after insemination. Other eggs at the same stage were exposed to gamma-rays from 60Co during the same period. The dose-response relationships for frequencies of chromosome aberrations per egg were fitted to a linear-quadratic model for HTO beta-particles, and to a linear model for 60Co gamma-rays. The chromosome aberrations were mainly chromosome-type, and the majority of all aberrations were fragments. RBE values of HTO beta-particles relative to 60Co gamma-rays and acute X-rays, which were estimated from the ratio of the linear regression coefficients over 0.05-Gy range, were 2.0 and 1.6, respectively.  相似文献   

9.
The fine structure of radiation-induced chromosomal aberrations in Potorous tridactylis (rat kangaroo) cells was examined in situ by electron microscopy. The observations on the structure of terminal deletions (acentric fragments), anaphase bridges and "gaps," sidearm bridges, and specialized regions, such as the nucleolus organizer, are discussed in detail. Conclusions based on these observations are the following: (a) damage is physically expressed only at anaphase; (b) a gap region is composed of two subunits, each of which is about 800–1000 A in diameter and may correspond to a half-chromatid structure; (c) the ends of acentric fragments are structurally similar to normal chromosome ends, except where the break occurs in a specific region such as the secondary constriction; (d) at metaphase the fragment and the main portion of the chromosome move as a single unit to the equator, and the two units are disconnected only at the onset of anaphase; (e) sidearm bridges appear to be exchanges, involving a subchromatid unit. The interpretation of this evidence is consistent with the hypothesis that the chromosome is a multistranded structure.  相似文献   

10.
The cytogenetic analysis was performed in the bone marrow cells of Wistar rats treated with a therapeutic dose of thaliblastine (250 mg/kg) and exposed to gamma-rays (2 Gy). Thaliblastine alone induced chromosome aberrations and polyploid cells. The latter were the result of the stathmokinetic effect of the drug. In contrast to gamma-radiation of 2 Gy thaliblastine elicited a minor mutagenic effect. The cytogenetic effect of the combined treatment is greater than the sum of the two agents delivered separately, the maximum effect of radiation and thaliblastine being exhibited on the 8th and the 12th hour, respectively. The difference between the sum of aberrations after separate treatments and the yield of aberrations after the combined treatment is due to chromatid fragments.  相似文献   

11.
Repair of single-strand breaks of DNA and simultaneous recovery of chromosomal aberrations were studied after treatment of barley seeds with the monofunctional alkylating chemical mutagen, propyl methanesulfonate in vivo. In soaked seeds the diminution of single-strand breaks of DNA induced by PMS was correlated with the decrease of chromosomal aberrations, whereas in dried seeds the repair of DNA breaks was depressed and, in accord with this, the frequency of chromosomal aberrations increased. The prolonged storage of seeds led to a more delayed repair of chromosomal aberrations in dry seeds and a more delayed accelerated repair in soaked seeds.  相似文献   

12.
The intrachromosomal distribution patterns of chromatid aberrations induced by N-methyl-N-nitrosourethane (MNU), N-ethyl-N-nitrosourethane (ENU) and ethyleneimine (EI) were compared with those induced by combined treatment with the same mutagens and caffeine, the latter being considered as an inhibitor of post-replication repair of DNA.Chromatid aberrations induced by mutagens alone were distributed non-randomly along the chromosomes. In certain regions few aberrations were located; in others pronounced clustering of aberrations was observed and these regions were considered to be hot spots. This refers especially to MNU- and EI-induced aberrations, whereas ENU-induced chromatid aberrations showed a more length-proportional distribution. In ENU experiments, certain chromosomal segments also represented hot spots, but these were less pronounced. The distribution patterns of chromatid aberrations induced by combined treatment with mutagens and caffeine differed significantly from those observed in experiments with the mutagens only. There seemed to be a tendency to approach random distribution here. This was a result both of the decrease in the quantity of the aberrations in the regions, which in the experiments with mutagens only were hot spots, and of its increase in other chromosomal regions. Some of these regions were considered as hot spots but they were less pronounced. These tendencies refer to MNU and EI. Certain differences between the two variants, with the without caffeine, in ENU experiments were observed but these were of lower expressivity.The causes od differential sensivity of chromosomal regions are discussed. The conclusion is drawn that clustering of chromatid aberrations in certain chromosomal regions is due to differences in the repair systems acting in heterochromatic and euchromatic regions.  相似文献   

13.
Treatment of Allium cepa meristematic cells in metaphase with the topoisomerase II inhibitor ICRF-193, results in bridging of the sister chromatids at anaphase. Separation of the sisters in experimentally generated acentric chromosomal fragments was also inhibited by ICRF-193, indicating that some non-centromeric catenations also persist in metaphase chromosomes. Thus, catenations must be resolved by DNA topoisomerase II at the metaphase-to-anaphase transition to allow segregation of sisters. A passive mechanism could maintain catenations holding sisters until the onset of anaphase. At this point the opposite tension exerted on sister chromatids could render the decatenation reaction physically more favorable than catenation. But this possibility was dismissed as acentric chromosome fragments were able to separate their sister chromatids at anaphase. A timing mechanism (a common trigger for two processes taking different times to be completed) could passively couple the resolution of the last remaining catenations to the moment of anaphase onset. This possibility was also discarded as cells arrested in metaphase with microtubule-destabilising drugs still displayed anaphase bridges when released in the presence of ICRF-193. It is possible that a checkpoint mechanism prevents the release of the last catenations linking sisters until the onset of anaphase. To test whether cells are competent to fully resolve catenations before anaphase onset, we generated multinucleate plant cells. In this system, the nuclei within a single multinucleate cell displayed differences in chromosome condensation at metaphase, but initiated anaphase synchronously. When multinucleates were treated with ICRF-193 at the metaphase-toanaphase transition, tangled and untangled anaphases were observed within the same cell. This can only occur if cells are competent to disentangle sister chromatids before the onset of anaphase, but are prevented from doing so by a checkpoint mechanism.  相似文献   

14.
The paper covers investigation of cytogenetic activity of chiral mutagens and their specific effects on the plant cells chromosomes of soft winter wheat (Triticum aestivum L.). Comparative analysis of cytogenetic activity of chiral NEU: S(+)1-N-nitroso- 1-N-methyl-3-N-sec-buthylureas (S(+)NMsBU) and R(-)1-N-nitroso- 1N-methyl-3-Nsec-buthylureas (R(-)NMsBU) on winter wheat was performed. As it was shown by the frequency of chromosomal aberrations the S(+) stereoisomer was twice more active than R(-). In addition to typical anaphase aberrations (fragments, bridges, lagging chromosomes) the numerous mitosis pathologies were revealed - K-mitoses, hyperspiralization and despiralization of chromosomes, unequal allocation of chromosomes between the daughter nuclei, mass fragmentation, nondisjunction and chromosome adhesion, three-pole mitoses, etc. Neither of the mentioned pathologies was observed under the action of NEU and gamma-rays.  相似文献   

15.
All of the levels of ozone used in these experiments caused morphological damage to plants of Vicia faba L., but only the dose of 200 parts per hundred million for 4 h or 8 h caused chromosomal damage in the microsporocytes. Significant chromosomal damage appeared 24 h after fumigation in metaphase I and anaphase I - telophase I but no significant damage was found in anaphase II - telophase II. This observation suggests that chromosomes are more susceptible to ozone during early stages of meiosis than at later stages. Chromosomal damage was of two types: physiological, as suggested by chromosome stickiness and physical, as indicated by bridges, fragments, and micronuclei.  相似文献   

16.
A simulation analysis of the kinetics of micronucleus formation in polychromatic erythrocytes in mouse bone marrow was performed after a single administration of 3 chemicals--mitomycin C (MMC), 6-mercaptopurine (6-MP) and 1-beta-D-arabinofuranosylcytosine (Ara-C)--with different modes of action. The time-response patterns in the incidence of chromosomal aberrations and micronuclei after treatment with each chemical were compared and subjected to the simulation study with 3 parameters. Two of them, the time between the final mitotic metaphase of the erythroid series and nucleus expulsion (T1), and the duration of the polychromatic erythrocyte (PCE) stage in the bone marrow (T2), were almost identical for the 3 chemicals. However, the coefficients of formation rate of micronucleated cells resulting from cells with chromosomal aberration(s) (k) differed: Ara-C differed from the other two. These results indicate that chromosomal aberrations, especially chromatid breaks and probably gaps, induced by this chemical, effectively contribute to micronucleus formation. The DNA content of micronuclei was also compared to the length of acentric fragments induced by Ara-C and it was found that their distributions were comparable. These findings strongly suggest that chromosomal aberrations induced by chemicals are essential events for the induction of micronuclei in the PCE of bone marrow.  相似文献   

17.
Three pesticides have been studied for their genotoxicity by the use of assays in the plant Crepis capillaris, aimed at measuring chromosomal aberrations, micronuclei and sister chromosome exchange (SCE). The fungicides Rubigan 12 EC (fenarimol) and Rovral 25 Flo (iprodione) and the insecticide Omite 57 E (propargite) are all widely used nowadays. The aim of our study was to evaluate the genotoxic effects of these pesticides at concentrations corresponding to those applied in agricultural practice. In preliminary experiments we found that these concentrations do not influence cell proliferation and do not inhibit the growth of root meristems. In all experiments formulated commercial products were used. From the results we conclude that the three pesticides did not induce chromosomal aberrations as estimated by metaphase and anaphase analyses. They were also not capable to induce SCE. Rubigan did not induce micronucleus formation even at the highest concentration tested, but Omite and Rovral markedly increased micronucleus formation. The MN response depended on the sampling time and the concentration used, which showed a significant dose-response correlation (r=0.978, P<0.01 and r=0.941, P<0.01, respectively). A greater increase in micronucleus frequency was observed after Rovral treatment, where the highest concentration gave a response 8-10-fold above the negative control. Both pesticides induced high frequencies of lagging chromosomes, even after exposure to the lower test concentrations. The presence of lagging chromosomes is an indication of anti-microtubule activity of the pesticides tested. This effect was more strongly expressed after exposure to the two higher concentrations of Omite and Rovral. In this case a complete destruction of the mitotic spindle was observed, resulting in C-mitoses as well as in numerical aberrations-polyploidy and aneuploidy. The present findings suggest that Omite and Rovral at concentrations comparable to those used in practice can be regarded as potential aneugens.  相似文献   

18.
L Fabry  C Coton 《Mutation research》1985,149(3):475-483
Cytosine arabinoside (ara-C), an inhibitor of DNA synthesis and repair, has been used to study the mechanisms of formation of chromosomal aberrations after exposure to low- and high-LET radiation. When G0 human lymphocytes were exposed either to gamma-rays or to d(50 MeV)-Be neutrons and immediately treated with ara-C for increasing periods of time, the frequency of aberrations (dicentrics) increased sharply. For gamma-rays, the enhancement increased with the duration of the treatment up to 5 h, whereas for neutrons, an ara-C treatment lasting for 5 h was no more effective than treatment for 3 h. These results were confirmed by the second experiment in which ara-C was administered for 3 h with an increasing time delay following irradiation. Since no increase in the dicentric frequency was observed when ara-C was administered 5 h after gamma-irradiation, it is suggested that the induced breaks rejoined within that time. For neutrons, the data were conflicting since the repair was completed within 3 h after a dose of 0.5 Gy, and in approximately 5 h after a dose of 2.0 Gy. From both experiments, it appears that gamma-rays and fast neutrons produce similar types of lesions, as ara-C increased the frequencies of aberrations induced by both types of radiation. However, the ara-C treatment resulted in a smaller increase in aberrations following neutron irradiation. According to the enzymatic nature of break formation and the mode of action of ara-C on the polymerase activity, it is suggested that, in addition to double-strand breaks, single-strand breaks could be the lesions involved in the repair processes inhibited by ara-C. Single-strand breaks formed directly or by secondary reactions would, therefore, be one of the major lesions responsible for the aberrations produced by gamma and neutron radiations.  相似文献   

19.
The induction of chromosomal aberrations in rat pleural mesothelial cells (RPMC) following in vitro treatment with chrysotile fibres has been demonstrated. The production of chromosomal aberrations was also observed after treatment of the cells with benzo-3,4-pyrene (BP). The yield of abnormal metaphases was dose-dependent and reached 58% at a BP dose of 2 micrograms/ml. Chrysotile fibres at 7 micrograms/ml induced 21% abnormal metaphases and the frequency decreased with further increases in fibre concentration. Their decline is possibly related to a lethal effect. Chrysotile-induced chromosomal aberrations were primarily of the chromatid type and included breaks and fragments. BP induced chromosome exchanges which were not seen following chrysotile treatment. Minutes and double minutes were detected in BP-treated RPMC and occasionally found after chrysotile application. These results confirm that chrysotile fibres are clastogenic for some cultured cells and demonstrate that the fibres induce chromosome damage in target RPMC.  相似文献   

20.
The relative importance of hydrogen peroxide generated as a consequence of irradiation with X-rays for the production of chromosomal aberrations has been studied in cultured CHO cells. Catalase introduced into cells by electroporation protected DNA from strand breakage induced by hydrogen peroxide given 4h later, and the yield of chromosome aberrations was also reduced. Nevertheless, when the cells were irradiated after treatment with catalase following a similar protocol and the yield of chromosomal aberrations analyzed at metaphase, no protective effect was observed as compared with cells treated with X-rays alone. These observations seem to support the hypothesis that hydroxyl radicals generated from hydrogen peroxide are not a major factor responsible for chromosome damage induced by ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号