首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified propionaldehyde, n-propanol, isopropanol and N-nitroso-2-hydroxy-propylpropylamine following incubation of N-nitrosodi-n-propylamine with a microsomal fraction from rat liver. Based on the yields of the various products, we have shown that β-oxidation occurs at about 15% of the level of α-oxidation. β-as well as α-oxidation was shown to be carried out by the microsomal mixed function oxidase system. N-nitroso-2-hydroxy-propylpropylamine is further oxidized by the microsomal preparation to yield N-nitroso-2-oxopropylpropylamine.  相似文献   

2.
Condensation of dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride with benzyl alcohol in the presence of N,N,2,4,6-pentamethylaniline or N,N,2,6-tetramethylaniline gave an oximino glycoside that was reduced with lithium aluminum hydride to benzyl 2-amino-2-deoxy-α-D-gluco- and -mannopyranoside hydrochloride that were identified as the N-acetyl derivatives.  相似文献   

3.
《Phytochemistry》1986,25(9):2241-2242
The alkaloidal fraction of Catha edulis yielded upon repeated chromatography (-)-N-formylnorephedrine whose 1HNMR and 13CNMR spectra suggested the presence of cisoid (major) and transoid forms (minor). The identity of the isolated compound was established by comparison with the major product obtained by formylating (-)-norephedrine; the minor product was found to be (-)-N,O-diformylnorephedrine.  相似文献   

4.
The extracellular chitinase produced by Serratia marcescens was obtained in highly purified form by adsorption-digestion on chitin. After gel electrophoresis in a nondenaturing system, the purified preparation exhibited two major protein bands that coincided with enzymatic activity. A study of the enzyme properties showed its suitability for the analysis of chitin. Thus, the chitinase exhibited excellent stability, a wide pH optimum, and linear kinetics over a much greater range than similar enzymes from other sources. The major product of chitin hydrolysis was chitobiose, which was slowly converted into free N-acetylglucosamine by traces of β-N-acetylglucosaminidase present in the purified preparation. The preparation was free from other polysaccharide hydrolases. Experiments with radiolabeled yeast cell walls showed that the chitinase was able to degrade wall chitin completely and specifically.  相似文献   

5.
The reaction of sodium D-glucuronate with a synthetic peptide, AcTyrLysGlyNH2 acetate, under physiological conditions, gave as major product the sodium salt of AcTyr-N-(D-arabino-5-carboxy-2,3,4,5-tetrahydroxy-1-pentenyl)-N-(D-arabino- 5-carboxy-3,4,5-trihydroxy-2-oxopentylidene)LysGlyNH2 (2). The structure was elucidated on the basis of p.m.r., 13C-n.m.r., i.r., and u.v. spectra, and pH titration. Compound 2 is the product of oxidation of the sodium salt of AcTyr-N,N-bis(D- arabino-5-carboxy-2,3,4,5-tetrahydroxy-1-pentenyl)LysGlyNH2, the bis-enol form of the di-D-fructuronic acid peptide obtained through the Amadori rearrangement. A new type of condensation that gives a product having a conjugated enol-keto-immonium group might take place when D-glucuronic acid reacts with peptides or proteins containing a lysine residue.  相似文献   

6.
HOCl by oxidative decarboxylation converts several α-amino acids into a mixture of the corresponding nitriles (major) and aldehydes (minor product). In addition, chlorination of the ring of tyrosine was observed. Cysteine when reacted with HOCl yielded cystine and cysteic acid, while with cystine, cysteic acid was the only product identified. The nitrogen bond of several dipeptides was found to be resistant to aqueous HOCl at room temperature. Chlorination of these compounds gave the corresponding N,N-dichlorodipeptide.  相似文献   

7.
BackgroundN-Nitroso compounds are thought to play a significant role in the development of gastric cancer. Epidemiological data, however, are sparse in examining the associations between biomarkers of exposure to N-nitroso compounds and the risk of gastric cancer.MethodsA nested case-control study within a prospective cohort of 18,244 middle-aged and older men in Shanghai, China, was conducted to examine the association between urinary level of N-nitroso compounds and risk of gastric cancer. Information on demographics, usual dietary intake, and use of alcohol and tobacco was collected through in-person interviews at enrollment. Urinary levels of nitrate, nitrite, N-nitroso-2-methylthiazolidine-4-carboxylic acid (NMTCA), N-nitrosoproline (NPRO), N-nitrososarcosine (NSAR), N-nitrosothiazolidine-4-carboxylic acid (NTCA), as well as serum H. pylori antibodies were quantified in 191 gastric cancer cases and 569 individually matched controls. Logistic regression method was used to assess the association between urinary levels of N-nitroso compounds and risk of gastric cancer.ResultsCompared with controls, gastric cancer patients had overall comparable levels of urinary nitrate, nitrite, and N-nitroso compounds. Among individuals seronegative for antibodies to H. pylori, elevated levels of urinary nitrate were associated with increased risk of gastric cancer. The multivariate-adjusted odds ratios for the second and third tertiles of nitrate were 3.27 (95% confidence interval = 0.76–14.04) and 4.82 (95% confidence interval = 1.05–22.17), respectively, compared with the lowest tertile (P for trend = 0.042). There was no statistically significant association between urinary levels of nitrite or N-nitroso compounds and risk of gastric cancer. Urinary NMTCA level was significantly associated with consumption of alcohol and preserved meat and fish food items.ConclusionThe present study demonstrates that exposure to nitrate, a precursor of N-nitroso compounds, may increase the risk of gastric cancer among individuals without a history of H. pylori infection.  相似文献   

8.
The mechanism of anaerobic reduction of NO2? to N2O in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, was investigated. With ascorbate-reduced phenazine methosulfate (PMS) as the electron donor, the nitrite reductase of this photodenitrifier reduced NO2? to NO and a trace amount of N2O. With dithionite-reduced benzyl viologen as the electron donor, the major product of NO2? reduction was NH2OH, and a trace amount of N2O was also produced. The nitrate reductase itself had no NO reductase activity with ascorbate-reduced PMS. It was concluded that the essential product of NO2? reduction by the purified nitrite reductase is NO. Chromatophore membranes stoichiometrically produced N2O from NO2? with any electron donor, such as dithionite-redduced benzyl viologen, ascorbate-reduced PMS or NADH/FMN. The membranes also contrained activity of NO reduction of N2O with either ascorbate-reduced PMS or duroquinol. The NO reductase activity with duroquinol was inhibited by antimycin A. Stoichiometric production of N2O from N2? also was observed in the reconstituted NO2? reduction system which contained the cytochrome bc1 complex, cytochrome c2, the nitrite reductase and duroquinol as the electron donor. The preparation of the cytochrome bc1 complex itself contianed NO reductase activity. From these results the mechanism of NO2? reduction to N2O in this photodenitrifier was determined as the nitrite reductase reducing NO2? to NO with electrons from the cytochrome bc1 complex, and NO subsequently being reduced, without release, to N2O with electrons from the cytochrome bc1 complex by the NO reductase, which is closely associated with the complex.  相似文献   

9.
N-Amidinoproline, a hybrid structure modeling key features of the Arg-Pro sequence, was synthesized. The activation of carboxyl group of free N-amidinoproline was found to result in the formation of a cyclic side product, whose structure was confirmed by ESI MS, 1H NMR, and 13C NMR spectra. The preparation of N-(mesitylenesulfonylamidino)-L-proline using the mesitylenesulfonyl derivative of 2-methylisothiourea was demonstrated to be accompanied by partial racemization. The target product was synthesized by modification of N-amidinoproline by mesitylenesulfonyl chloride. The possibility of using N-amidinoproline in the N-terminal modification of a peptide chain was shown by the example of synthesis of an analogue of the 95–98 fragment of fibrinogen α chain.  相似文献   

10.
N-glycosylation is one of the most abundant posttranslational modifications of proteins, essential for many physiological processes, including protein folding, protein stability, oligomerization and aggregation, and molecular recognition events. Defects in the N-glycosylation pathway cause diseases that are classified as congenital disorders of glycosylation. The ability to manipulate protein N-glycosylation is critical not only to our fundamental understanding of biology but also for the development of new drugs for a wide range of human diseases. Chemoenzymatic synthesis using engineered endo-β-N-acetylglucosaminidases (ENGases) has been used extensively to modulate the chemistry of N-glycosylated proteins. However, defining the molecular mechanisms by which ENGases specifically recognize and process N-glycans remains a major challenge. Here we present the X-ray crystal structure of the ENGase EndoBT-3987 from Bacteroides thetaiotaomicron in complex with a hybrid-type glycan product. In combination with alanine scanning mutagenesis, molecular docking calculations and enzymatic activity measurements conducted on a chemically engineered monoclonal antibody substrate unveil two mechanisms for hybrid-type recognition and processing by paradigmatic ENGases. Altogether, the experimental data provide pivotal insight into the molecular mechanism of substrate recognition and specificity for GH18 ENGases and further advance our understanding of chemoenzymatic synthesis and remodeling of homogeneous N-glycan glycoproteins.  相似文献   

11.
《Bioorganic chemistry》1986,14(4):392-404
Δ2-Thiazoline-2-carboxylate, the product of the suspected physiological reaction catalyzed by d-amino acid oxidase, is stable to hydrolysis at 37°C and pH 7 or above, but it hydrolyzes readily at pH 5 or below to give a mixture of N- and S-oxalylcysteamines; the N-oxalyl derivative predominates at pH's above 1 while the S-oxyalyl compound is the major product at high acidities. The pH-rate profile looks like the superposition of two bell-shaped curves. The initial increase in the rate as the pH is lowered is controlled by a pKa of 3.95 and from pH 1 to 3 the rate is relatively constant (k = 6.7 × 10−4s−1 at 37°C and ionic strength 0.5 m). Below pH 1 the rate increases again to a maximum in 1 m HCl and then decreases in more highly acidic solutions. The rate of conversion of S-oxalylcysteamine to N-oxalylcysteamine is inversely proportional to the hydrogen ion concentration from pH 3 to 5 but becomes largely independent of pH from pH 1 to 2. In the pH-independent region the rate is comparable with that observed by others for S-acetylcysteamine but in the pH-dependent region the rate is 20 to 25 times faster for the oxalyl derivative than for the acetyl compound. At pH 1, N-oxalylcysteamine is partially converted to the S-oxalyl derivative but the rate of hydrolysis (k = 1.0 × 10−5s−1 at 37°C) to cysteamine and oxalate of this partially equilibrated system occurs at a comparable rate. The results of this investigation are rationalized in terms of what is known about other thiazoline hydrolyses and intramolecular S to N acyl migrations. The main differences in the present case are presumably due to the fact that thiazoline-2-carboxylate can undergo hydrolysis by two reaction manifolds, one with the carboxyl unprotonated and the other with it protonated. The relevance of these results to possible reactions of thiazoline-2-carboxylate in vivo is briefly considered.  相似文献   

12.
Engineering of metabolic pathways by genetic modification has been restricted largely to enzyme-encoding structural genes. The product yield of such pathways is a quantitative genetic trait. Out of 52 Saccharomyces cerevisiae strains phenotyped in small-scale fermentations, we identified strain CBS6412 as having unusually low glycerol production and higher ethanol yield as compared to an industrial reference strain. We mapped the QTLs underlying this quantitative trait with pooled-segregant whole-genome sequencing using 20 superior segregants selected from a total of 257. Plots of SNP variant frequency against SNP chromosomal position revealed one major and one minor locus. Downscaling of the major locus and reciprocal hemizygosity analysis identified an allele of SSK1, ssk1E330NK356N, expressing a truncated and partially mistranslated protein, as causative gene. The diploid CBS6412 parent was homozygous for ssk1E330N…K356N. This allele affected growth and volumetric productivity less than the gene deletion. Introduction of the ssk1E330N…K356N allele in the industrial reference strain resulted in stronger reduction of the glycerol/ethanol ratio compared to SSK1 deletion and also compromised volumetric productivity and osmotolerance less. Our results show that polygenic analysis of yeast biodiversity can provide superior novel gene tools for metabolic engineering.  相似文献   

13.
The products of hydrazinolysis of the 1-N-acetyl and 1-N-(l-β-aspartyl) derivatives of 2-acetamido-2-deoxy-β-d-glucopyranosylamine could not be converted quantitatively into 2-amino-2-deoxy-d-glucose under mild conditions. Proton and 13C-n.m.r. measurements indicated that the hydrazone of 2-amino-2-deoxy-d-glucose was a major product of the hydrazinolysis of 2-acetamido-1-N-acetyl-2-deoxy-β-d-glucopyranosylamine. Control experiments showed that acetohydrazide is slowly converted into 4-amino-3,5-dimethyl-1,2,4-triazole under-the conditions of hydrazinolysis, and that 2-amino-2-deoxy-d-glucose reacts slowly with acetohydrazide in dilute acetic acid. The implications of these results in relation to the hydrazinolysis of glycopeptides and glycoproteins are discussed.  相似文献   

14.
15.
Dopamine (DA) was measured in various tissue extracts as [3H]methoxy-N-acetyldopamine after incubation with two partially purified enzymes, catechol-O-methyl transferase (EC 2.1.1.1) and N-acetyltransferase (EC 2.3.1.5), in the presence of [3H]adenosylmethionine and acetyl-CoA. This product can be separated quantitatively from labeled products of norepinephrine and epinephrine by solvent extraction. N-Acetyl-DA can be assayed by omitting the acetylating system from the incubation mixture. The procedure is rapid, convenient for processing large numbers of samples, and has a sensitivity of approximately 0.1 pmol. It has been used to measure DA in ganglia and in individual neurons from gastropod mollusks.  相似文献   

16.
Similar temporal patterns were found in three mineral soils for the composition of the gaseous products of denitrification following the onset of anaerobic conditions. During the early period of anaerobiosis (0 up to 1 to 3 h), N2 was the dominant product of denitrification. The NO3 → N2O activity then increased, but was not accompanied by a corresponding increase in N2O-reducing activity. This resulted in a relatively extended period of time (1 to 3 up to 16 to 33 h) during which N2O was a major product. Eventually (after 16 to 33 h), an increase in N2O-reducing activity occurred without a comparable increase in the N2O-producing activity. The increase in the rate of N2O reduction did not occur in the presence of chloramphenicol and required the presence of N2O or NO3 during the preceding anaerobic incubation. During the final period (16 to 33, up to 48 h), N2 was generally the sole product of denitrification, since the rate of N2O reduction exceeded the rate of N2O production. A similar sequential pattern was also found for a culture of a denitrifying Flavobacterium sp. shifted to anaerobic growth. A staggered synthesis of the enzymes in the denitrification sequence apparently occurred in response to anoxia, which caused first a net production of N2O followed by consumption of N2O.  相似文献   

17.
The major radioactive products of the fixation of [13N]N2 by Azolla caroliniana Willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of [13N]N2-derived 13NH4+ after longer incubation periods was attributed to the spatial separation between the site of N2-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from [13N]N2, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and [13N]N2-derived 13NH4+, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Anabaena.  相似文献   

18.
Chitin, a homopolymer of β1,4-linked N-acetylglucosamine (GlcNAc) residues, is a key component of the cell walls of fungi and the exoskeletons of arthropods. Chitin synthases transfer GlcNAc from UDP-GlcNAc to preexisting chitin chains in reactions that are typically stimulated by free GlcNAc. The effect of GlcNAc was probed by using a yeast strain expressing a single chitin synthase, Chs2, by examining formation of chitin oligosaccharides (COs) and insoluble chitin, and by replacing GlcNAc with 2-acylamido analogues of GlcNAc. Synthesis of COs was strongly dependent on inclusion of GlcNAc in chitin synthase incubations, and N,N′-diacetylchitobiose (GlcNAc2) was the major reaction product. Formation of both COs and insoluble chitin was also stimulated by GlcNAc2 and by N-propanoyl-, N-butanoyl-, and N-glycolylglucosamine. MALDI analyses of the COs made in the presence of 2-acylamido analogues of GlcNAc showed they that contained a single GlcNAc analogue and one or more additional GlcNAc residues. These results indicate that Chs2 can use certain 2-acylamido analogues of GlcNAc, and likely free GlcNAc and GlcNAc2 as well, as GlcNAc acceptors in a UDP-GlcNAc-dependent glycosyltransfer reaction. Further, formation of modified disaccharides indicates that CSs can transfer single GlcNAc residues.  相似文献   

19.
During the transport of iron as ferrichrome complex into cells of Escherichia coli K-12, the ligand was modified and excreted into the medium. The rate of the formation of the modified product corresponded with the rate of iron transport. The modified product showed a decreased affinity for ferric iron and did not serve as an effective iron ionophore. After all of the ferrichrome had been converted, the modified product was taken up into the cell in an iron-free form. The uptake of ferrichrome and of the modified product depended on the transport system specified by the tonA and tonB genes. The modified product could be converted back into ferrichrome by mild acid or alkaline hydrolysis. One mole of acetate was released per mole of ferrichrome. It is proposed that one N-hydroxyl group of ferrichrome is acetylated to explain the low affinity for iron as the N-hydroxyl groups form the ligands for iron (III). A weak ester linkage by which the acetyl group is covalently bonded would account for the easy hydrolysis. The iron-free form of ferrichrome, deferri-ferrichrome, was also rapidly converted when incubated with cells with a functional transport system. It is therefore likely that iron is released from ferrichrome by reduction before modification takes place. The conversion of the ligand could be a mechanism by which cells rid themselves of a potentially deleterious ligand for iron in the cytoplasm. A possible role in ferrichrome transport is discussed.  相似文献   

20.
Human liver mRNA isolated from subjects phenotyped as homozygous PiMM or PiZZ α1-antitrypsin, was translated in a reticulocyte cell-free system, and α1-antitrypsin identified by immunoprecipitation. In the presence of dog pancreas membranes the translated α1-antitrypsin appeared as a larger product. Treatment with endo-β-N-glucosaminidase yielded a protein smaller than the reticulocyte translated product, presumably due to removal of the N-terminal signal sequence by membranes and sugar residues by endo-β-N-glucosaminidase. Quantitation of α1-antitrypsin translated from PiMM and PiZZ livers suggests that both mRNA species were present at the same cellular concentration, and that processing to the core glycosylation stage proceeded at identical rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号