首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the changes in amplitude of the first short latency positive potential (2.3 ± 0.3 msec, mean ± S.D.) of the direct cortical response (DCR) elicited by surface electrical stimulation of the motor cortex in anaesthetised baboons. Local cortical blood flow, measured by the hydrogen clearance method, was progressively reduced by acute middle cerebral artery occlusion and subsequent hypotension and was related to the amplitude of this potential. With flow levels greater than 25 ml/100 g/min the DCR was essentially unaffected, but it was lost with flows below 20 ml/100 g/min. These results indicate a threshold relationship between the generation of the electrical activity evoked in the cortical elements and local cortical flow, similar to that previously demonstrated for cortical somatosensory evoked potentials.  相似文献   

2.
Identical facilitation of the primary response to peripheral stimuli in rats and monkeys has been induced by local superficial cooling of the cortex in the somatosensory area S1. Higher facilitation of the evoked potentials was observed in the neostriatum of rats. Correlation of the evoked potentials with primary responses was more significant with respect to temporal than amplitude parameters. In monkeys, "cool" facilitation of the cortical primary response did not result in facilitation of the evoked potential in the neostriatum. Temporal correlation between the primary response and the evoked potential was less significant, whereas correlation in the amplitude was absent. The data obtained indicate the existence of differences in functional organization of corticofugal influences upon the neostriatum in rodents and primates.  相似文献   

3.
Respiratory-related evoked potentials (RREP) elicited by inspiratory mechanical loads have been recorded in humans. Early RREP peaks were hypothesized to be generated by activation of neurons in the somatosensory cortex. An animal model was developed to test this hypothesis in chronically instrumented, awake, spontaneously breathing lambs. Electrocorticogram (ECoG) was recorded bilaterally with ball electrodes on the dural surface over the somatosensory region. Inspiratory occlusions were presented through a face mask or endotracheal tube as interruptions of inspiration. Occlusion-elicited evoked potentials were obtained by computer-signal averaging the ECoG activity. A short-latency positive peak was observed bilaterally in the averaged occlusion-elicited evoked potentials in all animals breathing with the facemask and 5 of 8 lambs with the endotracheal tube. Postmortem identification of the electrode location demonstrated that the ECoG was recorded in the caudal-lateral portion of the somatosensory cortex. These results demonstrate that inspiratory occlusion elicits an evoked potential in the somatosensory cortical region of awake, spontaneously breathing lambs. The lamb cortical RREP is similar to human RREP.  相似文献   

4.
Somatosensory, brainstem auditory evoked and peripheral sensory-motor responses were recorded in rats anaesthetized with either pentobarbital or a ketamine-xylazine combination. This was carried out in order to assess which of these agents degraded responses to a lesser extent and thus would be more suitable for monitoring experimental effects. Neither of the anaesthetic agents affected peripheral sensory or motor conduction, nor were there any interpeak latency changes of the early components of the brainstem auditory response. However, pentobarbital anaesthesia resulted in an increase in latency of the initial positive component of the somatosensory cortical evoked potential and attenuation of the following negative component. During the recovery stages of ketamine-xylazine anaesthesia the longer latency evoked potential components were observed to emerge.  相似文献   

5.
In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2) has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1) might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN) stimulation of the left MN (CS) resulted in a significant reduction of the N20 response in the target (left) S1 relative to a test stimulus (TS) to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20-25 ms after median nerve stimulation.  相似文献   

6.
Potentials evoked in nuclei of the reticular formation by electrodermal stimulation of the limbs were investigated in acute experiments on unanesthetized, immobilized rats during cooling of the somatosensory cortex in the area of representation of one forelimb. Evoked potentials in the reticular formation were found to depend on the degree of cold inhibition of the cortical primary response to the same stimulation. The peak time of the main negative wave increased from 40–50 to 60–80 msec with a simultaneous decrease in its amplitude or its total disappearance in the case of deep cooling of the cortex. Cooling of the cortex had a similar although weaker effect on the earlier wave of the evoked potential with a peak time of 14 msec, recorded in the ventral reticular nucleus. In parallel recordings of potentials evoked by stimulation of other limbs they remained unchanged at these same points of the reticular formation or were reduced in amplitude while preserving the same temporal parameters. Cooling of the cortex thus selectively delays the development and reduces the amplitude of the response to stimulation of the limb in whose area of representation transformation of the afferent signal into a corticofugal volley is blocked. Consequently the normal development of both late and early components of the potential evoked in the reticular formation by somatic stimulation requires an additional volley, descending from the cortex, and formed as a result of transformation of the same afferent signal in the corresponding point of the somatosensory cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 32–38, January–February, 1981.  相似文献   

7.
Rats were treated with a combination of insecticide agents in different timing schemes. In acute administration, 1/5 LD50 of the three insecticides: dimethoate, propoxur and cypermethrin, or their combination, was given once by gavage. In the developmental model, female rats received oral doses of 1/25 LD50 of the above insecticides in combination in three timing schemes including pregnancy and lactation. Responses in the somatosensory cortex and in the tail nerve, evoked by peripheral electric stimulation, were recorded in acute preparation under urethane anesthesia. It was tested whether the parameters of the cortical and peripheral evoked response are dependent on the frequency and whether this dependence is different in control and treated animals. The latency increase of the cortical responses with increasing stimulation frequency was significantly stronger in rats treated acutely with cypermethrin and the combination, and in rats receiving the combination during both intra- and extrauterine development. On the duration, the effects were less clear. Frequency dependent increase of the tail nerve action potential latency was significantly intensified by cypermethrin, and the amplitude decrease, by cypermethrin and dimethoate. Fatigue of this response during a stimulation series was also altered by the insecticides. Frequency dependence and fatigue possibly reflect the actual state of the nervous system and may have the potency to be developed to functional biomarkers.  相似文献   

8.
The relationship between 5 positive components of somatosensory evoked potentials (EPs) and subjective response to electrical stimuli, which were recorded in the same human subjects, was assessed in the present study. Five levels of tactile stimuli and 6 levels of noxious stimuli were applied to the tip of the right index finger. The relationship between the magnitude of subjective response and stimulus intensity was well expressed by a power function. Of 5 major positive components in an EP, P30 and P50 were localized at contralateral primary somatic projection area, while P90, P190 and P270 were at the vertex area. The amplitude of the 5 components systematically increased as increasing stimulus intensity, and also increased with the magnitude of subjective response. A significant correlation between the amplitude of P30 or P50 and stimulus intensity was found when the effect of subjective response was partially out. By contrast, the amplitudes of P190 and P270 were associated with subjective response when the effect of stimulus intensity was partially out. These results suggest that the earlier EP components reflect sensory signal processing, while the latter ones concern the subjective evaluating system.  相似文献   

9.
We obtained reproducible cortical evoked potentials (EPs) in response to electrical stimulation of the rectum with 1 Hz frequency. We found 2 distinctly different EPs in response to rectal stimulation. In 5 females, the EP had an early onset latency (mean 26 msec) with multiple positive and negative peaks. In 10 females, the EP had a later onset latency (mean 52 msec) and a trifid configuration, having a very prominent negative peak. The early onset EPs after rectal stimulation appeared very similar to the wave form of the cortical EPs recorded after pudendal nerve stimulation. Finding similar interpeak latencies in the early onset EP after rectal stimulation and the EP after pudendal nerve stimulation suggests that either the same pathway was used or that rectal stimulation also stimulated the pudendal nerve. It appears that we stimulated visceral afferents when we recorded late onset EPs, because the large EP amplitude declined rapidly with faster stimulation rates and also with greater number of averaging, and the sensation threshold was very unstable, all different to somatosensory EPs.  相似文献   

10.
Evoked potentials to tones and clicks were recorded simultaneously from seven points of the auditory cortex and one or two points of the somatosensory cortex in unanesthetized cats. Comparison of evoked potentials to tones of equal loudness in the 250–7000 Hz band showed no common pattern of cortical tonotopic distribution. However, an individual dependence of the components of the evoked potential on pitch and on localization of the recording point exists for each animal. With a change in stimulus intensity the absolute and relative values of these components of the evoked potential vary. The initial positive waves are the most variable; besides the two waves already known a third, intermediate wave, particulary sensitive to loudness, was discovered. The negative wave of the primary response increases proportionally to loudness. Evoked potentials to clicks are more uniform over the auditory cortex and more stable than those to tones. Responses appeared in the somatosensory cortex to loud stimuli, more regularly to clicks than to tones. It is concluded that the parameter of pitch is reflected in the cat cortex as a complex spatially-individual distribution of the amplitude and time parameters of the evoked potentials.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 115–125, March–April, 1975.  相似文献   

11.
Bioelectrical activity of the somatosensory cortex was studied in the Wistar rats with chronic (1.5-2 months) compression of the infraorbital nerve produced by two partial ligations. In 20% of rats spike-slow wave complex and slow waves were observed. Electrostimulation of the skin on the injured nerve side resulted in a considerable increase in the amplitude of early components of the contralaterally evoked potentials in comparison with the non-injured side stimulation in 75% of rats. A decrease in the evoked potential thresholds on the injured nerve stimulation was shown in both hemispheres. In most of the animals a hypersynchronous late component of the evoked potential was observed.  相似文献   

12.
The characteristics of the averaged evoked potentials (AEP) (experiments with awake non-paralysed animals), of the evoked potentials (EP) and of the responses of single sensorimotor cortical neurons (acute experiments) of cats to tone-bursts with frequencies within 0.1-6.0 kHz were studied. Response selectivity to the tone-burst frequencies which are energetically pronounced in some biologically significant sounds for the cat was observed. The averaged curve of the dependence of the amplitude of AEP in the somatosensory cortical region (S1) on the tone-burst frequency has reliable maximum values at the frequencies of 0.8, 1.6 and 2.0-3.0 kHz. Most pronounced changes in the heart rhythm were observed within the tone-burst frequency ranges in which the AEP of the highest amplitudes were recorded. The amplitude of the AEP was found to increase during the conditioned reflex elaboration. The curve of the dependence of the probability of the EP occurrence on the frequency at equal sound pressure levels had maximum values at the frequencies of 1.6 and 3.2 kHz. The highest amplitude values of EP were found at frequencies of 0.8, 1.6 and 3.2 kHz. More than half of the recorded neurons revealed the lowest values of the response thresholds and the maximum values of the occurrence probability under suprathreshold stimulation at frequencies close to 0.8, 1.6, and 3.2 kHz. It is supposed that the above mentioned feature of the input frequency organization in sensorimotor cortex is connected with the selectivity as to the biological significance of acoustic stimuli.  相似文献   

13.
To assess the role of different mechanisms in increasing the amplitude of the early components of cortical somatosensory evoked potentials (SSEPs) in lesions of central structures of the skin-motor analyzer in humans, SSEPs of the hand cortical projection zones (the points C3 and C4) and the spinal dorsal column nuclei (DCN) were recorded in parallel in response to trancutaneous electrostimulation of the median nerve in the carpal region in two groups of subjects. The control group included 26 healthy volunteers aged 39–62 years; the other group included 12 patients aged 45–63 years with hemiplegia and sensory disorders due to a stroke experienced 8–24 months before the electrophysiological studies. A significant (from P < 0.05 to P < 0.01) increase in the amplitude of the early SSEP components of the intact hemisphere and several early SSEP components of the affected hemisphere (with a decrease in the amplitude of the other components) and no changes in DCN SSEPs were observed in the patients compared to the control group, which was interpreted as a manifestation of local mechanisms causing an isolated increase in cortical excitability without changes in the reactivity of DCN.  相似文献   

14.
Previous studies suggest that evidence for the sub-second activation of distributed neural networks can be obtained by computing the covariance between segments of the scalp-recorded evoked potential. However, the cortical representation of such potentials is not known. Here we report a case study where the evoked potential covariance (EPC) measure was applied to data recorded from a 58-channel subdural grid implanted in an epilepsy patient. Recordings were made while the patient performed a task that required judging the somatosensory intensities of electrical stimuli and executing precise finger flexion responses in response to a subset of those stimuli. Post-stimulus EPC patterns involved covariances between somatosensory, motor, and temporal regions. Pre-stimulus EPC patterns involved these same regions, but only when it could be anticipated that the upcoming stimulus would likely require a response. The majority of the observed EPCs occurred with non-zero time-lags, and these EPCs often involved non-adjacent electrode pairs. Thus, the observed EPCs were unlikely to arise solely from volume conduction. Rather, they appeared to reflect the transient integration of activity across distinct cortical processing nodes.  相似文献   

15.
Temporal and amplitude characteristics of evoked potentials of the sensomotor cortex in waking cats were studied during variation in the intensity of electrodermal stimulation. The results obtained in experiments on intact animals and on the same animals for several months after division of the spinocervical tracts at the cervical level were compared. After blocking of the inflow of afferent impulses along these tracts of the spinal cord, statistically significant changes in evoked potentials were observed, mainly in response to medium and strong stimulation. These changes were more clear in the motor and second somatosensory areas of the cortex. A decrease in sensitivity to pain also was found. During recovery of the motor functions, cutaneous sensation remained impaired and the amplitude characteristics of the evoked somatosensory activity were not restored. The results suggest that thinner fibers predominate among the primary afferent fibers of the spinocervical tract, and their projections are more widely represented in the second somatosensory and motor areas of the cortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 516–523, September–October, 1972.  相似文献   

16.
It has long been recognized that humans can perceive respiratory loads. There have been several studies on the detection and psychophysical quantification of mechanical load perception. This investigation was designed to record cortical sensory neurogenic activity related to inspiratory mechanical loading in humans. Inspiration was periodically occluded in human subjects while the electroencephalographic (EEG) activity in the somatosensory region of the cerebral cortex was recorded. The onset of inspiratory mouth pressure (Pm) was used to initiate signal averaging of the EEG signals. Cortical evoked potentials elicited by inspiratory occlusions were observed when C3 and C alpha were referenced to CZ. This evoked potential was not observed with the control (unoccluded) breaths. There was considerable subject variability in the peak latencies that was related to the differences in the inspiratory drive, as measured by occlusion pressure (P0.1). The results of this study demonstrate that neurogenic activity can be recorded in the somatosensory region of the cortex that is related to inspiratory occlusions. The peak latencies are longer than analogous somatosensory evoked potentials elicited by stimulation of the hand and foot. It is hypothesized that a portion of this latency difference is related to the time required for the subject to generate sufficient inspiratory force to activate the afferents mediating the cortical response.  相似文献   

17.
A method using a DC servo motor is described to produce brisk angular movements at finger interphalangeal joints in humans. Small passive flexions of 2° elicited sizable somatosensory evoked potentials (SEPs) starting with a contralateral positive P34 parietal response thought to reflect activation of a radial equivalent dipole generator in area 2 which receives joint inputs. By contrast, electric stimulation of tactile (non-joint) inputs from the distal phalanx evoked the usual contralateral negative N20 reflecting a tangential equivalent dipole generator in area 3b. Finger joint inputs also evoked a precentral positivity equivalent to the P22 of motor area 4, and a large frontal negativity equivalent to N30. It is suggested that natural stimulation allows human SEP components to the differentiated in conjunction with distinct cortical somatotopic projections.  相似文献   

18.
The electrophysiological experiments were carried out on five male macaques rhesus under nembutal anesthesia. Kinesthetic evoked potentials in response to arm rotation in the elbow joint were registered in the contralateral primary somatosensory cortex. The data obtained show a significant increase in the duration of kinesthetic potential first positive component with 10 degrees-40 degrees arm rotation amplitude, as compared to 2 degrees rotation. On the contrary, the latent period and amplitude of the component in this stimulation range (2 degrees-40 degrees) were similar. It is suggested that the increase in the arm rotation angle is selectively reflected in the temporary parameters of kinesthetic potential first positive component.  相似文献   

19.
单侧肢体的外周神经损伤通常导致对侧体感皮层的功能重组. 然而,接受了对侧颈 7 (C7) 外周神经移位手术治疗单侧手臂臂丛全撕脱的病人,在术后早期当其患手被触摸时,只在其健手产生感觉. 在术后晚期,病人才逐渐恢复其患手和健手的正常、独立的功能. 我们在模拟对侧颈 7 (C7) 外周神经移位手术病例的大鼠模型上,用记录体感诱发电位的方法研究了患手和健手的体感代表区. 患手的体感和运动功能由于 C7 神经的再生而逐渐恢复. 术后第 5 个月始, 13 只大鼠患手的体感代表区只出现在其同侧的皮层,同时患手和健手的代表区在该皮层内是高度重叠的 (除掉一个例外),虽然刺激它们产生的体感诱发电位的潜伏期和反应幅度有很大的不同. 结果表明,移位到患手的对侧外周神经能够导致同侧体感皮层动态的功能重组,提示身体另侧感觉输入的介入激发了大脑显著的可塑性.  相似文献   

20.
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号