首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the central or peripheral origin of the starvation-induced modifications of growth hormone (GH) and thyroid-stimulating hormone (TSH) secretions, the effects of starvation were studied in freely moving male rats with hypothalamo-hypophyseal disconnection. Five days after the disconnection GH secretion exhibited lower maximal values and higher trough levels and ultradian pulsatile secretion was lost as compared to controls. TSH levels were also decreased. The lesion did not modify pituitary somatostatin (SRIF) receptors as assessed by 125I-Tyr-O-D-Trp-8-SRIF binding or inhibition of adenylate cyclase activity. On the other hand, the growth hormone releasing factor (GRF) capacity to stimulate adenylate cyclase was strongly reduced by the lesion without modification of the affinity. Exposure to 72 h food deprivation decreased GH pulses and TSH levels in control rats but did not modify GH secretory profiles or TSH levels of lesioned rats. Plasma glucose and insulin levels were equally decreased after fasting in control and lesioned rats. Altogether, our results demonstrate that starvation-induced modifications of GH and TSH secretions are of central origin while glucose and insulin changes are peripherally triggered. They suggest that the hypothalamus is the only source of SRIF implicated in this effect.  相似文献   

2.
The regulation of TSH secretion by E1, E2, E1 alpha and F2 alpha prostaglandins was studied by means of a monolayer culture system of dispersed rat anterior pituitary cells which was appropriately responsive to TRH, T3 and SRIF. PGEs and Fs induced significant increases in basal TSH release of the order of 30% at 10(-9) or 10(-8) to 10(-5) or 10(-4) M. Only PGEs accentuated the TSH release induced by a half maximal dose of TRH (10(-9) M) of the order of 60% in a dose dependent manner (10(-9) to 10(-6) M of PGEs), whereas PGFs did not. SRIF (10(-8) or 10(-9) M) alone failed to alter basal TSH release but did completely inhibit the TSH response to TRH (10(-9) M). SRIF also significantly inhibited both the increase in basal TSH release and the accentuation of the TSH response to TRH induced by PGEs (10(-6) M) but did not diminish the enhancement of basal TSH release induced by PGFs (10(-6) M). 7-oxa-13-prostynoic acid (PY1), a prostaglandin antagonist, which can act as an agonist in some systems, itself exhibited agonistic properties of PGEs with respect to basal and TRH induced TSH release. PY1 failed to inhibit the TSH release induced by all PGs, but partially inhibited the accentuated TSH response to TRH induced by PGEs. Indomethacin, PG synthetase inhibitor, did not affect basal or TRH induced TSH release in our system. These data suggest that PGs of the E and F series probably modulate TSH release via different mechanisms and that the PGE effect on basal TSH release differs from its augmentation of TRH induced TSH response. It is speculated that these effects of PGs may have physiological significance.  相似文献   

3.
Role of calcium (Ca2+) in the effects of thyroliberin (TRH) and somatostatin (SRIF) on the release of growth hormone (GH), prolactin (PRL) and thyroid stimulating hormone (TSH) from the rat adenohypophyseal cells in primary monolayer cultures has been studied. Decrease of extracellular Ca2+ diminished the stimulatory effects of TRH on TSH and PRL release. Ca2+ is also an important factor in the mechanism of SRIF action. Data obtained in the experiments with high Ca2+ levels in the medium indicate that some antagonistic interrelationship exists between Ca2+ and SRIF. These results suggest that the participation of cAMP alone is not sufficient for stimulus-secretion coupling. Another messenger, namely Ca2+, is necessary for the effects of hypothalamic hormones. On the other hand, the contribution of Ca2+ to the secretory process in mammotrophs, somatotrophs and thyrotrophs is not equal. PRL and TSH secretion is more dependent on the presence of extracellular Ca2+ than the release of GH.  相似文献   

4.
We have studied the effect of the intravenous administration of somatostatin (SRIF) on the thyrotropin (TSH) response to intravenous dermorphin (D), a new potent opioid peptide, in 7 healthy men. D significantly increased the serum TSH concentration. SRIF administration prior to, during and after D completely prevented the D-induced rise in serum TSH. These results confirm that D stimulates TSH release in man and that this stimulatory effect can be prevented by SRIF.  相似文献   

5.
SMS 201-995 (SMS), a synthetic analogue of somatostatin (SRIF) has been shown to be effective in the treatment of the hypersecretion of hormones such as in acromegaly. However, little is known about the effects of SMS on the secretion of thyroid-stimulating hormone (TSH) in normal subjects. In this study, plasma TSH was determined with a highly sensitive immunoradiometric assay, in addition to the concentration of SMS in plasma and urine with a radioimmunoassay, following subcutaneous injection of 25, 50, 100 micrograms of SMS (4 subjects/dose) or a placebo (6 subjects) to normal male subjects, at 0900 h after an overnight fast. The plasma concentrations of SMS were dose-responsive and the peak levels were 1.61 +/- 0.09, 4.91 +/- 0.30 and 8.52 +/- 1.18 ng/ml, which were observed at 30, 15 and 45 min after the injection of 25, 50 and 100 micrograms of SMS, respectively. Mean plasma disappearance half-time of SMS was estimated to be 110 +/- 3 min. Plasma TSH was suppressed in a dose dependent manner and the suppression lasted for at least 8 hours. At 8 hours after the injection of 25, 50 and 100 micrograms of SMS, the plasma TSH levels were 43.8 +/- 19.4, 33.9 +/- 9.4 and 24.9 +/- 3.2%, respectively, of the basal values. The results suggest that SMS suppresses secretion of TSH from the normal thyrotrophs in man and thus also that attention should be paid to possible hypothyroidism during the long-term treatment of patients such as those with acromegaly with this potent analogue of SRIF.  相似文献   

6.
Somatostatin (SRIF) inhibits calcitonin and T3-T4 secretion in thyroid. We have investigated the in vitro effect of SRIF on the basal and TSH induced [3H]thy incorporation, thyroglobulin (tgb) RNA and cAMP level in follicular cells, isolated from normal and adenomatous human thyroids. [3H]thy uptake has been evaluated as TCA-precipitable material in 2, 4, 8, 24 h incubated follicles and 24 h incubated adherent cells. Tgb RNA has been quantified with cytoplasmic dot blot hybridization and cAMP level with RIA method. SRIF reduces basal and TSH-induced [3H]thy in both suspension follicles and epithelial adherent cells. However it does not modify tgb RNA nor cAMP levels in incubated follicles. These data suggest a direct antiproliferative effect of SRIF on human thyroid.  相似文献   

7.
Growth hormone (GH) pulsatility requires periventricular-nuclear somatostatin(SRIF(PeV)), arcuate-nuclear (ArC) GH-releasing hormone (GHRH), and systemic GH autofeedback. However, no current formalism interlinks these regulatory loci in a manner that generates self-renewable GH dynamics. The latter must include in the adult rat 1) infrequent volleys of high-amplitude GH peaks in the male, 2) frequent discrete low-amplitude GH pulses in the female, 3) disruption of the male pattern by severing SRIF(PeV) outflow to ArC, 4) stimulation of GHRH and GH secretion by central nervous system delivery of SRIF, 5) inhibition of GH release by central exposure to GHRH, and 6) a reboundlike burst of GHRH secretion induced by stopping peripheral infusion of SRIF. The present study validates by computer-assisted simulations a simplified ensemble formulation that predicts each of the foregoing six outcomes, wherein 1) blood-borne GH stimulates SRIF(PeV) secretion after a long time latency, 2) SRIF(PeV) inhibits both pituitary GH and ArC GHRH release, 3) ArC GHRH and SRIF(ArC) oscillate reciprocally with brief time delay, and 4) SRIF(PeV) represses and disinhibits the putative GHRH-SRIF(ArC) oscillator. According to the present analytic construction, time-delayed feedforward and feedback signaling among SRIF(PeV), ArC GHRH, and SRIF(ArC) could endow the complex physiological patterns of GH secretion in the male and female.  相似文献   

8.
Clinical applications of somatostatin   总被引:4,自引:0,他引:4  
Because of its wide distribution in the organism, natural somatostatin (SRIF) demonstrates an ample spectrum of actions, involving mainly the central neuroendocrine system and the enteropancreatic area. In the former, this peptide may find its field of application in conditions characterized by excessive GH, TSH or ACTH secretion, depending on the central or peripheral cause of the inappropriate hormone control. The inhibitory effect of SRIF on gastrointestinal and pancreatic hormones may be useful in the management of tumors originating in this system and also in the treatment of inflammatory processes such as pancreatitis, in malignant diarrhea, and in gastrointestinal bleeding. A complex action of SRIF and its derivative on insulin release and glucose homeostasis may offer some advantages in the control of unstable diabetes. Dampening of organic functions in the upper digestive tract may also render SRIF and its analogues useful in the exploration of the gallbladder, gastric and pancreatic functions. The effect of such peptides on tissue growth and on the regulation of blood pressure are the subject of present investigations. Cytoprotection, an interesting aspect of SRIF application, is discussed elsewhere in this compendium. Finally, some comments on the possible use of SRIF as an additive to the conventional treatment of burns and sepsis close this review.  相似文献   

9.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

10.
The effects of somatostatin (SRIF) are mediated through the seven transmembrane receptor family that signals via Gi/Go. To date, five distinct SRIF receptors have been characterized and designated SSTR1-5. We have characterized the SRIF receptor that mediates the increase in [Ca(2+)](i) and insulin secretion in HIT-T15 cells (Simian virus 40-transformed Syrian hamster islets) using high affinity, subtype selective agonists for SSTR1 (L-797,591), SSTR2 (L-779,976), SSTR3 (L-796,778), SSTR4 (L-803,087), SSTR5 (L-817,818) and PRL-2903, a specific SSTR2 antagonist. In the presence of arginine vasopressin (AVP), SRIF increased [Ca(2+)](i) and insulin secretion. Treatment with the SSTR2 agonist L-779,976 resulted in similar responses to SRIF. In addition, L-779,976 increased both [Ca(2+)](i) and insulin secretion in a dose-dependent manner. Treatment with L-779,976 alone did not alter [Ca(2+)](i) or basal insulin secretion. In the presence of AVP, all other SRIF receptor agonists failed to increase [Ca(2+)](i) and insulin secretion. The effects of SRIF and L-779,976 were abolished by the SSTR2 antagonist PRL-2903. Our results suggest that the mechanism underlying SRIF-induced insulin secretion in HIT-T15 cells be mediated through the SSTR2.  相似文献   

11.
The release of growth hormone (GH) from the pituitary gland is primarily inhibited by somatostatin (SRIF) from the hypothalamus via interactions with five types of SRIF receptors (SSTRs). However, the inhibition mechanism of SRIF on GH has not been fully examined. In this study, we repressed the hypothalamic SRIF in young male mice by stereotaxic injection of the lentiviral-shRNA against SRIF to investigate the role of hypothalamic SRIF on hormone secretion in the GH/IGF-1 axis. We found that the reduction of SRIF in hypothalamus was associated with an increase in the protein, but not the mRNA level, of the GH in the pituitary where SSTR 2 and SSTR 5 act importantly. Interestingly, the level of blood circulatory SRIF, GH, IGF-1 and the body weight were not significantly influenced by the downregulation of hypothalamic SRIF. Our findings provide insights into the mechanisms underlying the inhibition of SRIF on GH secretion.  相似文献   

12.
K Kawakubo  D H Coy  J H Walsh  Y Taché 《Life sciences》1999,65(10):PL115-PL120
Urethane increases the release of somatostatin (SRIF) which inhibits gastric acid secretion. The SRIF monoclonal antibody, CURE.S6 and the novel sst2 antagonist, PRL-2903 injected intravenously at maximal effective doses increased gastric acid secretion by 2 and 10 fold respectively from basal values within 30 min in urethane-anesthetized rats. Plasma gastrin levels were elevated 2.5 fold within 15 min by PRL-2903 (1.3 micromol/kg, i.v.). These data indicate that the low gastrin and acid secretion levels induced by urethane result from endogenous SRIF acting on sst2 and that PRL-2903 is a valuable SRIF antagonist to assess sst2 mediated events.  相似文献   

13.
Growth hormone (GH) secretion is controlled by GH-releasing hormone (GHRH), the GH release-inhibiting hormone somatostatin (SRIF), and autofeedback connections. The ensemble network produces sexually dimorphic patterns of GH secretion. In an effort to formalize this system, we implemented a deterministically based autonomous feedback-driven construct of five principal dose-responsive regulatory interactions: GHRH drive of GH pituitary release, competitive inhibition of GH release by SRIF, GH autofeedback via SRIF with a time delay, delayed GH autonegative feedback on GHRH, and SRIF inhibition of GHRH secretion. This formulation engenders a malelike pattern of successive GH volleys due jointly to positive time-delayed feedback of GH on SRIF and negative feedback of SRIF on GH and GHRH. The multipeak volley is explicated as arising from a reciprocal interaction between GH and GHRH during periods of low SRIF secretion. The applicability of this formalism to neuroendocrine control is explored by initial parameter sensitivity analysis and is illustrated for selected feedback-dependent experimental paradigms. The present construct is not overparameterized and does not require an ad hoc pulse generator to achieve pulsatile GH output. Further evolution of interactive constructs could aid in exploring more complex feedback postulates that confer the vivid sexual dimorphism of female GH profiles.  相似文献   

14.
M L Brandi  R Toccafondi 《Peptides》1985,6(4):641-644
Somatostatin (SRIF), cholecystokinin (CCK), gastrin and substance P, as single agents, do not influence baseline cellular cAMP levels in human thyroid cultures. SRIF inhibits TSH-induced cAMP accumulation in human thyroid cell, while CCK, gastrin and substance P do not modify cAMP response to TSH. Vasoactive intestinal peptide (VIP) increases cellular cAMP levels in human thyroid cultures and its effect is additive to increases produced by norepinephrine (NE) and isoproterenol (ISO). Neither SRIF nor the other tested peptides influence adrenergic and VIP-ergic cAMP stimulation.  相似文献   

15.
In 28 6-h experiments on 10 conscious resting trained male dogs, plasma growth hormone (GH) was determined at 5-min intervals by radioimmunoassay. For all experiments, the basal GH concentration in plasma was 0.80 +/- 0.06 ng mL-1. In each experiment, 1-3 secretory bursts of GH occurred, raising plasma GH 2.4 to 15.3 times basal concentrations (for all 43 bursts, 6.6 +/- 0.4 times the basal value). Metabolic clearance rates (MCR) and apparent distribution volumes (V) were determined, using stepwise infusions of canine GH. The MCR (3.99 +/- 0.30 mL kg-1 min-1) and V (57.9 +/- 5.5 mL kg-1) were used to transform the GH concentration versus time data into GH secretion rates, using a single compartment approach. Basal GH secretion rates for all 28 experiments were 3.12 +/- 0.24 ng kg-1 min-1. The secretory bursts yield peak GH secretion rates of 9.4 +/- 0.8 times basal secretion and these steep-sloped bursts last 25.1 +/- 1.2 min. Six-hour infusions of 0.15 microgram kg-1 min-1 of somatostatin (SRIF) abolished all secretory bursts but did not lower basal secretion rates. In five of seven SRIF infusion experiments in which samples were taken after the infusion ceased a secretory burst was seen in the hour following cessation of infusion (in four cases within 10 min). These secretory bursts lasted 23.0 +/- 2.9 min and were similar to those seen in control experiments. Infusions of SRIF at 0.05 microgram kg-1 min-1 had no effect. These results imply that during basal GH secretion, a surfeit of SRIF impinges on the somatotrophs, as extra SRIF does not further lower basal secretion. However, during secretory bursts, very little SRIF must be present, as exogenous SRIF blocks these bursts. The bursts are similar in duration to overshoots provoked in perifused dispersed rat somatotrophs by removal of an SRIF signal. It seems likely that their cause in vivo is similar. (All values are means +/- SEM.)  相似文献   

16.
17.
Apart from the known hypothalamic controls, which have been well documented, a myriad of compounds both endogenous and exogenous have proved effective in influencing secretion of prolactin (PRL). Recent studies have shown that somatostatin (SRIF), when injected intra-atrially as a bolus, is able to inhibit PRL secretion in vivo. However, the inhibitory effect of SRIF occurs only in adenohypophyses previously primed with estradiol. This research was undertaken to examine the ultrastructural effects of that inhibition using male Sprague-Dawley rats primed for three weeks with subcutaneous implants of estradiol. Within 2 min of injection of SRIF (1 mg/kg), the adenohypophyses were removed and processed for electron microscopy. We found dramatic changes in the estradiol-primed mammotrophs, including 1) an apparent rearrangement of rough endoplasmic reticulum (RER) into concentric cisternae, and 2) the appearance of intracellular bodies closely associated with granules. These changes were not observed in non-estradiol-primed male rats injected with SRIF which is consistent with the fact that in the normal male rats, SRIF failed to inhibit PRL secretion. These findings suggest that SRIF causes reorganization of cellular organelles so that PRL granules are sequestered thereby inhibiting secretion of PRL.  相似文献   

18.
The present study was undertaken to examine the effects of 12-0-tetradecanoyl-phorbol-13-acetate (TPA), one of the potent tumor promoting agents, on GH, TSH and PRL release by rat adenohypophyseal dispersed cells and fragments, using a superfusion technique. TPA (10(-6) to 10(-5) M) stimulated GH release from acutely dispersed rat adenohypophyseal cells. Neither TSH nor PRL was affected, but both were increased by TRH in a dose-dependent fashion (10(-9) to 10(-7) M). In fragments, TPA (10(-8) to 10(-6) M) elicited a dose-related release of GH. Exposure of the fragments to 10(-6) M TPA for 5 min promptly caused a 5-fold increase in GH release which continued for at least 40 min after stopping the stimulation. The addition of somatostatin (SRIF) (10(-7) M) decreased basal GH release and abolished GH release induced by 10(-6) M TPA. In contrast to GH, neither TSH nor PRL release was affected by TPA, but both were stimulated by TRH. These results indicate 1) that GH release is more sensitive to stimulation with TPA in normal rat anterior pituitaries in vitro than the release of TSH and PRL, and 2) that SRIF abolishes TPA-induced GH release.  相似文献   

19.
1. The intravenous (i.v.) infusion of somatostatin (SRIF, 1.0 microgram/kg per min) promptly (within 5 min) reduced the growth hormone (GH) concentration in the plasma of conscious adult chickens. 2. The GH concentration progressively declined throughout a 60-min period of SRIF infusion, but was dramatically increased above pre-infusion levels within 5 min of SRIF withdrawal and maintained at an elevated level for at least 30 min afterwards. 3. Sodium pentobarbitone-anaesthesia lowered the basal GH concentration to levels comparable with those in conscious birds infused with SRIF. When administered to anaesthetized birds, exogenous SRIF was unable to further reduce the GH concentration and unable to induce 'rebound' GH release. 4. While thyrotropin releasing hormone (TRH, 10 micrograms/kg) increased the GH concentration in both conscious and anaesthetized birds, only the GH response in the anaesthetized birds was diminished by SRIF infusion. 5. Rebound GH secretion following the termination of SRIF infusion was observed in both conscious and anaesthetized birds injected with TRH. 6. These results demonstrate that SRIF can inhibit basal and TRH-stimulated GH secretion in adult domestic fowl and indicate that anaesthesia disrupts the normal control of GH releases.  相似文献   

20.
Somatostatin or somatostatin release inhibiting factor (SRIF) analogues are indicated for the treatment of somatotropinomas that hypersecrete growth hormone (GH). Indeed, SRIF inhibits intracellular Ca(2+) concentration ([Ca(2+)](i)), thus allowing the inhibition of GH secretion. In the present study, our hypothesis was that Ca(2+)/calmodulin-dependent kinase type II (CaMKII), a multifunctional serine/threonine protein kinase, is part of those signalling mechanisms mediating SRIF functions. All four CaMKII isoenzymes (termed α, β, γ and δ) are expressed in rat somatotroph GC cells, although only CaMKIIβ is inhibited by SRIF at both mRNA and protein levels. Similarly to SRIF, the specific knockdown of CaMKIIβ by RNA interference induces a decrease of [Ca(2+)](i). The effects of SRIF and those of CaMKIIβ knockdown are non-additive. These results are confirmed by the pharmacological blockade of CAMKII. We also observed that, similarly to SRIF, the specific knockdown of CaMKIIβ induces a decrease of both GH content/secretion. These results raise the hypothesis that CaMKIIβ may mediate, at least in part, the SRIF-induced control of [Ca(2+)](i). In addition, CaMKIIβ seems to play a positive role in maintaining the exocytosis of GH. Our data provide a framework for better elucidating the pathophysiological role of SRIF transduction network in somatotropinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号