首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is essential to characterize the cellular properties of mesenchymal stem cell populations to maintain quality specifications and control in regenerative medicine. Biofunctional materials have been designed as artificial matrices for the stimulation of cell adhesion and specific cellular functions. We have developed recombinant maltose-binding protein (MBP)-fused proteins as artificial adhesion matrices to control human mesenchymal stem cell (hMSC) fate by using an integrin-independent heparin sulfate proteoglycans-mediated cell adhesion. In this study, we characterize cell adhesion-dependent cellular behaviors of human adipose-derived stem cells (hASCs) and human bone marrow stem cells (hBMSCs). We used an MBP-fused basic fibroblast growth factor (MF)-coated surface and fibronectin (FN)-coated surface to restrict and support, respectively, integrin-mediated adhesion. The cells adhered to MF exhibited restricted actin cytoskeleton organization and focal adhesion kinase phosphorylation. The hASCs and hBMSCs exhibited different cytoplasmic projection morphologies on MF. Both hASCs and hBMSCs differentiated more dominantly into osteogenic cells on FN than on MF. In contrast, hASCs differentiated more dominantly into adipogenic cells on MF than on FN, whereas hBMSCs differentiated predominantly into adipogenic cells on FN. The results indicate that hASCs exhibit a competitive differentiation potential (osteogenesis vs. adipogenesis) that depends on the cell adhesion matrix, whereas hBMSCs exhibit both adipogenesis and osteogenesis in integrin-mediated adhesion and thus hBMSCs have noncompetitive differentiation potential. We suggest that comparing differentiation behaviors of hMSCs with the diversity of cell adhesion is an important way to characterize hMSCs for regenerative medicine.  相似文献   

2.
Mesenchymal stem cells (MSCs) are a heterogeneous population of stem/progenitor cells with pluripotent capacity to differentiate into mesodermal and non‐mesodermal cell lineages, including osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes, fibroblasts, myofibroblasts, epithelial cells, and neurons. MSCs reside primarily in the bone marrow, but also exist in other sites such as adipose tissue, peripheral blood, cord blood, liver, and fetal tissues. When stimulated by specific signals, these cells can be released from their niche in the bone marrow into circulation and recruited to the target tissues where they undergo in situ differentiation and contribute to tissue regeneration and homeostasis. Several characteristics of MSCs, such as the potential to differentiate into multiple lineages and the ability to be expanded ex vivo while retaining their original lineage differentiation commitment, make these cells very interesting targets for potential therapeutic use in regenerative medicine and tissue engineering. The feasibility for transplantation of primary or engineered MSCs as cell‐based therapy has been demonstrated. In this review, we summarize the current knowledge on the signals that control trafficking and differentiation of MSCs. J. Cell. Biochem. 106: 984–991, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
A nanoscale artificial extracellular matrix (nanoshell) formed by layer-by-layer adsorption can enhance and modulate the function of stem cells by transferring biochemical stimulus to the cell directly. Here, the nanoshell composed of fibronectin (FN) and chondroitin sulfate (CS) is demonstrated to promote chondrogenic differentiation of mesenchymal stem cells (MSCs). The multilayer structure of nanoshell is formed by repeating self-assembly of FN and CS, and its thickness can be controlled through the number of layers. The expression of chondrogenic markers in MSCs coated with the FN/CS nanoshell was increased as the number of bilayers in the nanoshell increased until four, but when it exceeds five bilayers, the effect began to decrease. Finally, the MSCs coated with optimized four bilayers of FN/CS nanoshell have high chondrogenic differentiation efficiency and showed the potential to increase formation of cartilage tissue when it is transplanted into mouse kidney. So, the precise regulation of stem cell fate at single cell level can be possible through the cellular surface modification by self-assembled polymeric film.  相似文献   

5.
间充质干细胞特性与应用前景   总被引:3,自引:0,他引:3  
仵敏娟  刘善荣  刘厚奇 《生命科学》2004,16(3):135-137,169
间充质干细胞是中胚层发育的早期细胞,具备干细胞的基本特性。在发育的不同阶段和特定环境条件下,间充质干细胞可向骨、软骨、肌肉、神经、血管及血液细胞等多种方向分化。在成体的很多器官和组织中也存在着间充质干细胞,以备修复和再生所用。间充质干细胞易于体外培养,扩增迅速,可以分化为多种细胞,为干细胞生物工程提供了一个很好的种子细胞。在明确间充质干细胞生物学特性和分化的机制后,可在体外和体内将其定向诱导分化为多种细胞。间充质干细胞具有巨大的临床应用价值和科学研究价值。  相似文献   

6.
In spite of the extensive potential of human mesenchymal stem cells (hMSCs) in cell therapy, little is known about the molecular mechanisms that regulate their therapeutic properties. We aimed to identify microRNAs (miRNAs) involved in controlling the transition between the resting and reparative phenotypes of hMSCs, hypothesizing that these miRNAs must be present in the undifferentiated cells and downregulated to allow initiation of distinct activation/differentiation programs. Differential miRNA expression analyses revealed that miR-335 is significantly downregulated upon hMSC differentiation. In addition, hMSCs derived from a variety of tissues express miR-335 at a higher level than human skin fibroblasts, and overexpression of miR-335 in hMSCs inhibited their proliferation and migration, as well as their osteogenic and adipogenic potential. Expression of miR-335 in hMSCs was upregulated by the canonical Wnt signaling pathway, a positive regulator of MSC self-renewal, and downregulated by interferon-γ (IFN-γ), a pro-inflammatory cytokine that has an important role in activating the immunomodulatory properties of hMSCs. Differential gene expression analyses, in combination with computational searches, defined a cluster of 62 putative target genes for miR-335 in hMSCs. Western blot and 3'UTR reporter assays confirmed RUNX2 as a direct target of miR-335 in hMSCs. These results strongly suggest that miR-335 downregulation is critical for the acquisition of reparative MSC phenotypes.  相似文献   

7.
Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promise in regenerative medicine for a variety of applications. Their potential in the treatment of cardiovascular disease is of particular interest due to its severity and prevalence. In order to be successful for cell therapy, PSCs must be pre‐differentiated into cardiomyocytes to prevent teratoma formation in vivo. Current methods focus on the supplementation of soluble factors to culture medium to drive differentiation into mesodermal lineages; however, these methods are costly with varying cardiomyocyte yields. Since cardiomyocytes are exposed to dynamic environments in vivo, there is potential in using mechanical stimulation to further drive differentiation in vitro. In this review, we will describe the most recent developments in how mechanical stimulation, including fluid shear, cyclic strain, and magnetically mediated strain, can guide cardiomyogenesis in PSCs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1089–1096, 2013  相似文献   

8.
A considerable amount of retrospective data is available that describes putative mesenchymal stem cells (MSCs). However, there is still very little knowledge available that documents the properties of a MSC in its native environment. Although the precise identity of MSCs remains a challenge, further understanding of their biological properties will be greatly advanced by analyzing the mechanisms that govern their self-renewal and differentiation potential. This review begins with the current state of knowledge on the biology of MSCs, specifically with respect to their existence in the adult organism and postulation of their biological niche. While MSCs are considered suitable candidates for cell-based strategies owing to their intrinsic capacity to self-renew and differentiate, there is currently little information available regarding the molecular mechanisms that govern their stem cell potential. We propose here a model for the regulation of MSC differentiation, and recent findings regarding the regulation of MSC differentiation are discussed. Current research efforts focused on elucidating the mechanisms regulating MSC differentiation should facilitate the design of optimal in vitro culture conditions to enhance their clinical utility cell and gene therapy.  相似文献   

9.
Cell volume regulation, as one of the fundamental homeostasis of the cell, is associated with many cellular behaviors and functions. With the increased studies on the effect of environmental mechanical cues on cell volume regulation, the relationship between cell volume regulation and mechanotransduction becomes more and more clear. In this paper, we review the mechanisms and hypotheses by which cell maintains its volume homeostasis both in vivo and in constructed cell mechanical microenvironment (CMM) in vitro. We discuss how the growth-division regulation maintains the volume homeostasis of cells in the cell cycle and how the cell cortex/membrane tension mediates the effect of CMM (i.e., osmotic pressure, matrix stiffness, and mechanical force) on cell volume regulation. We also highlight the roles of cell volume as a perfect integrator of the downstream signals of mechanotransduction from different aspects of CMM and an effective indicator for the mechanical condition that cell confronts. This interdisciplinary perspective can provide new insight into biomechanics and may shed light on bioengineering and pathological research work. We hope this review can facilitate future studies on the investigation of the role of cell volume in mechanotransduction.  相似文献   

10.
Allogeneic mesenchymal stem cell (MSC) transplantation improves cardiac function, but cellular differentiation results in loss of immunoprivilege and rejection. To explore the mechanism involved in this immune rejection, we investigated the influence of interleukin‐6 (IL‐6), a factor secreted by MSCs, on immune privilege after myogenic, endothelial and smooth muscle cell differentiation induced by 5‐azacytidine, VEGF, and transforming growth factor‐β (TGF‐β), respectively. Both RT‐PCR and ELISA showed that myogenic differentiation of MSCs was associated with significant downregulation of IL‐6 expression (P < 0.01), which was also observed following endothelial (P < 0.01) and smooth muscle cell differentiation (P < 0.05), indicating that IL‐6 downregulation was dependent on differentiation but not cell phenotype. Flow cytometry demonstrated that IL‐6 downregulation as a result of myogenic differentiation was associated with increased leucocyte‐mediated cell death in an allogeneic leucocyte co‐culture study (P < 0.01). The allogeneic reactivity associated with IL‐6 downregulation was also observed following MSC differentiation to endothelial and smooth muscle cells (P < 0.01), demonstrating that leucocyte‐mediated cytotoxicity was also dependent on differentiation but not cell phenotype. Restoration of IL‐6 partially rescued the differentiated cells from leucocyte‐mediated cell death. These findings suggest that rejection of allogeneic MSCs after implantation may be because of a reduction in cellular IL‐6 levels, and restoration of IL‐6 may be a new target to retain MSC immunoprivilege.  相似文献   

11.
Mechanical stimuli are important in directing the fate of stem cells; the effects of mechanical stimuli reported in recent research are reviewed here. Stem cells normally undergo two fundamental processes: proliferation, in which their numbers multiply, and differentiation, in which they transform into the specialized cells needed by the adult organism. Mechanical stimuli are well known to affect both processes of proliferation and differentiation, although the complete pathways relating specific mechanical stimuli to stem cell fate remain to be elucidated. We identified two broad classes of research findings and organized them according to the type of mechanical stress (compressive, tensile or shear) of the stimulus. Firstly, mechanical stress of any type activates stretch‐activated channels (SACs) on the cell membrane. Activation of SACs leads to cytoskeletal remodelling and to the expression of genes that regulate the basic growth, survival or apoptosis of the cells and thus regulates proliferation. Secondly, mechanical stress on cells that are physically attached to an extracellular matrix (ECM) initiates remodelling of cell membrane structures called integrins. This second process is highly dependent on the type of mechanical stress applied and result into various biological responses. A further process, the Wnt pathway, is also implicated: crosstalk between the integrin and Wnt pathways regulates the switch from proliferation to differentiation and finally regulates the type of differentiation. Therefore, the stem cell differentiation process involves different signalling molecules and their pathways and most likely depends upon the applied mechanical stimulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Inorganic polyphosphate [poly(P)] is a biopolymer existing in almost all cells and tissues, although its biological functions in higher eukaryotes have not been completely elucidated. We previously demonstrated that poly(P) enhances the function of fibroblast growth factors (FGFs) by stabilizing them and strengthening the affinity between FGFs and their cell surface receptors. Since FGFs play crucial roles in bone regeneration, we further investigated the effect of poly(P) on the cell differentiation of human stem cells via FGF signaling systems. Human dental pulp cells (HDPCs) isolated from human dental pulp show the characteristics of multipotent mesenchymal stem cells (MSCs). HDPCs secreted FGFs and the proliferation of HDPCs was shown to be enhanced by treatment with poly(P). Cell surface receptor-bound FGF-2 was stably maintained for more than 40 hours in the presence of poly(P). The phosphorylation of ERK1/2 was also enhanced by poly(P). The effect of poly(P) on the osteogenic differentiation of HDPCs and human MSCs (hMSCs) were also investigated. After 5 days of treatment with poly(P), type-I collagen expression of both cell types was enhanced. The C-terminal peptide of type-I collagen was also released at higher levels in poly(P)-treated HDPCs. Microarray analysis showed that expression of matrix metalloproteinase-1 (MMP1), osteopontin (OPN), osteocalcin (OC) and osteoprotegerin was induced in both cell types by poly(P). Furthermore, induced expression of MMP1, OPN and OC genes in both cells was confirmed by real-time PCR. Calcification of both cell types was clearly observed by alizarin red staining following treatment with poly(P). The results suggest that the activation of the FGF signaling pathway by poly(P) induces both proliferation and mineralization of stem cells.  相似文献   

13.
14.
15.
Bone marrow stromal cell lines (TBR cell lines) established from temperature-sensitive Simian Virus 40 T-antigen gene transgenic mice exhibited myogenic, osteogenic, and adipogenic differentiation. The effect of oncostatin M (OSM) on such mesenchymal cell differentiation of marrow stromal cell lines was examined. One of those stromal cell lines, TBRB, differentiated into skeletal muscle, and its differentiation was stimulated by OSM, whereas differentiation of TBR10-1 into smooth muscle was inhibited by OSM. TBR31-2 is a bipotent progenitor for adipocytes and osteoblasts, and OSM stimulated osteogenic differentiation while inhibiting adipogenic differentiation. On the other hand, TBR cell lines exhibited various potentials for supporting hematopoiesis in culture. When hematopoietic progenitor cells were cocultured with OSM-stimulated stromal cell lines, TBR10-1 and TBR31-2 exhibited enhanced hematopoietic supportive activity. As responsible molecules for stromal cell dependent hematopoiesis, expression of stem cell factor (SCF) (a ligand of c-Kit), vascular cell adhesion molecule (VCAM-1) (a ligand of VLA-4), and secretion of interleukin (IL)-6 were increased by OSM. OSM affected mesenchymal cell differentiation and promoted the hematopoietic supportive activity of marrow stromal cell lines. As OSM production is induced by cytokines from hematopoietic cells, OSM may be a key factor in mutual regulation between hematopoietic cells and stromal cells in the bone marrow. OSM may play a role as a regulator in maintaining the hematopoietic microenvironment in marrow by coordinating mesenchymal differentiation.  相似文献   

16.
17.
Plasminogen activator inhibitor-1 (PAI-1) is known as an inhibitor of fibrinolytic system. Previous studies suggest that PAI-1 is involved in the pathogenesis of osteoporosis induced by ovariectomy, diabetes, and glucocorticoid excess in mice. However, the roles of PAI-1 in early-stage osteogenic differentiation have remained unknown. In the current study, we investigated the roles of PAI-1 in osteoblastic differentiation of mesenchymal stem cells (MSCs) using wild-type (WT) and PAI-1-deficient (PAI-1 KO) mice. PAI-1 mRNA levels were increased with time during osteoblastic differentiation of MSCs or mesenchymal ST-2 cells. However, the increased PAI-1 levels declined at the mineralization phase in the experiment using MC3T3-E1 cells. PAI-1 deficiency significantly blunted the expression of osteogenic gene, such as osterix and alkaline phosphatase enhanced by bone morphogenetic protein (BMP)-2 in bone marrow-derived MSCs (BM-MSCs), adipose-tissue-derived MSCs (AD-MSCs), and bone marrow stromal cells of mice. Moreover, a reduction in endogenous PAI-1 levels by small interfering RNA significantly suppressed the expression of osteogenic gene in ST-2 cells. Plasmin did not affect osteoblastic differentiation of AD-MSCs induced by BMP-2 with or without PAI-1 deficiency. PAI-1 deficiency and a reduction in endogenous PAI-1 levels did not affect the phosphorylations of receptor-specific Smads by BMP-2 and transforming growth factor-β in AD-MSCs and ST-2 cells, respectively. In conclusion, we first showed that PAI-1 is crucial for the differentiation of MSCs into osteoblasts in mice.  相似文献   

18.
In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.  相似文献   

19.
20.
骨髓间充质干细胞(bone mesenchymal stemcell,BMSC)是骨髓基质细胞的重要组成部分,由于其不但能与其他细胞一起支持造血干细胞造血,而且还具有较强的增殖功能及多向分化潜能,在一定诱导因素下可定向分化成骨细胞、软骨细胞和脂肪细胞等,近年来已成为生物学和医学的研究热点。本文简要介绍了不同生长因子如血管内皮生长因子、碱性成纤维细胞生长因子、转化生长因子-β等对BMSC增殖、分化的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号