首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Putrescine, spermidine and spermine were transported into the rat lens against a concentration gradient. This process appeared to be energy-dependent and involved a carrier system different from those for amino acids. Competition experiments suggested that the three polyamines were transported by the same system or very similar systems. Incorporated spermine was converted to spermidine and putrescine, and spermidine was converted to putrescine. In contrast, the conversion of putrescine to spermidine and spermine, or the conversion of spermidine to spermine was not observed. Furthermore, ornithine was not utilized for the synthesis of putrescine. These metabolic characteristics of the polyamines in the rat lens were correlated with the extremely low activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase. Other enzymes of polyamine metabolisms, however, were relatively active. In conclusion, the lens has a very low ability for the de novo synthesis of polyamines. The polyamines in the lens are considered to be supplied form the surrounding intraocular fluid by an active transport system specific for polyamines.  相似文献   

2.
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.  相似文献   

3.
Differences were observed in the sequestration of polyamines putrescine, spermidine and spermine by isolated, ventilated, perfused rat and rabbit lungs, former being able to accumulate more polyamines compared to the latter. Steady state equilibrium was reached earlier for spermine in rat. Isolated ventilated lungs were perfused with harmaline and ouabain, inhibitors known to inhibit the sodium pump at a maximum concentration of 1 mM for rabbit lungs and 0.4 and 0.2 mM for rat lungs, respectively. They did not affect the uptake of polyamines by rat lung but decreased the uptake of putrescine by rabbit lung. Decreased sodium (50 meq/L) in the perfusate increased the uptake of spermine and spermidine by rabbit lung but again showed no effect with rat lung. However, the uptake of polyamines by isolated ventilated rat and rabbit lungs perfused for 60 min with these compounds was linear over the entire range of high concentrations studied. These results suggest that the major uptake process of polyamines by intact lungs of both animal species is primarily by simple diffusion. HPLC analysis of the perfusate and lungs from both animal species post-perfusion indicated no detectable metabolites of the polyamines.  相似文献   

4.
This is the first report correlating levels of polyamines and its fractions with differentiation in Dictyostelium discoideum. Temporal changes in endogenous levels of free, conjugated and bound putrescine, spermidine and spermine were analysed at critical stages of morphogenesis in this organism. No spermine was found at any given stage and putrescine was the most abundant polyamine. There was a sharp increase in the levels of both free (and total) and conjugated forms of putrescine and spermidine at the slug stage as compared to the growth phase. The levels of putrescine and spermidine were found to be higher in isolated prespore cells as compared to the prestalk cells. Remarkably, the levels of polyamine decreased at the early culminant stage. Data suggest that a moderate level of polyamines is needed for growth but it is important to have high levels of polyamines at the time of differentiation.  相似文献   

5.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

6.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescine, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

7.
The three major polyamines—putrescine, spermidine, and spermine—were studied and changes of their levels were examined in extracts of cerebral ganglia and fat body from adult Acheta domesticus. In nervous tissue, only spermidine and spermine were present and spermine was two- to three-fold more abundant than spermidine. The polyamine levels were high up to day 3, decreased on day 4, and then remained relatively unchanged up to day 10. The spermidine/spermine ratios decreased during the imaginal life. Higher spermidine titres were observed in the neural tissue of egg-laying females compared to virgin females. In the fat body, putrescine was detected together with spermidine and spermine. Spermidine and spermine levels were two-fold higher than putrescine. Fat body of virgin females contained two times more polyamines than male fat body. Low at emergence, spermidine and spermine concentrations peaked on days 2–3 only in females, and egg-laying was characterized by an increase of putrescine and spermidine titres. Starvation did not change polyamine contents, implying homeostatic regulation of the intracellular polyamine metabolism. These data showing tissue specific changes in polyamine levels during the imaginal life of Acheta domesticus point to the physiological importance of polyamines as possible intracellular regulators during adult insect development. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescien, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

9.
Androgenic control of polyamine concentrations in rat epididymis.   总被引:1,自引:0,他引:1  
Unilateral orchidectomy resulted in a significant decrease in tissue content of putrescine and polyamines. However, no differences were detected when the results were expressed in terms of ng g-1 tissue. At 48 h after bilateral orchidectomy, a significant decrease in putrescine content was observed, but spermidine and spermine content were unaffected. The observed decrease in putrescine was prevented by treatment with testosterone propionate, but neither spermidine nor spermine were affected. Bilateral orchidectomy resulted in a significant decrease in the tissue content of putrescine, spermidine and spermine after 7 days. Treatment with testosterone propionate increased the content of putrescine, spermidine and spermine in the epididymis by about 200%, 92% and 34%, respectively. When results were expressed as nmol g-1, a significant decrease after castration in putrescine and spermidine, but not in spermine, was observed. Treatment with testosterone propionate restored putrescine concentration, but had no effect on spermidine and spermine concentrations. In castrated rats treated with testosterone propionate, the anti-androgen flutamide abolished the effect of the androgen on putrescine and spermidine content, but there was no effect on spermine. Acetylputrescine was not detected in the epididymis, while acetylpolyamines were detected at much lower concentrations than polyamines. After bilateral orchidectomy there was a decrease in the tissue content of all acetylpolyamines and an increase in their tissue concentration. The effect of castration on acetylpolyamine content was reversed by testosterone propionate treatment. We conclude that an active synthesis of polyamines occurs in the rat epididymis, and that this process depends upon the androgen environment. Regulation of ornithine decarboxylase activity appears to be the main step that is controlled by androgens.  相似文献   

10.
Owing in part to their interactions with membrane proteins, polyamines (e.g., spermine, spermidine, and putrescine) have been identified as potential modulators of membrane excitability and Ca(2+) homeostasis in cardiac myocytes. To investigate whether polyamines also affect cardiac myofilament proteins, we assessed the effects of polyamines on contractility using rat myocytes and trabeculae that had been permeabilized with Triton X-100. Spermine, spermidine, and putrescine reversibly increased the [Ca(2+)] required for half-maximal tension (i.e., right-shifted tension pCa curves), with the following order of efficacy: spermine (+4) > spermidine (+3) > putrescine (+2). However, synthetic analogs that differed from spermine in charge distribution were not as effective as spermine in altering isometric tension. None of the polyamines had a significant effect on maximal tension, except at high concentrations. After flash photolysis of DM-Nitrophen (a caged Ca(2+) chelator), spermine accelerated the rate of tension development at low and intermediate but not high [Ca(2+)]. These results indicate that polyamines, especially spermine, interact with myofilament proteins to reduce apparent Ca(2+) binding affinity and speed cross-bridge cycling kinetics at submaximal [Ca(2+)].  相似文献   

11.
毛细管电泳-激光诱导荧光分析血清多胺的研究   总被引:3,自引:0,他引:3  
为进一步探讨多胺的生物学作用,建立了毛细管电泳-激光诱导荧光(λex=488 nm,λem=513 nm)分析血清多胺方法.在碱性介质中,多胺与荧光素异硫氰酸酯进行衍生化反应,硼酸盐(pH 8.6)作为运行缓冲液,运行电压20 kV,腐胺、精胺、精脒和1,6-己二胺(内标)在8 min内达到基线分离.考察了方法的线性范围、稳定性、检测限和方法的回收率等,方法具有样品处理简单,灵敏度高,速度快等特点.用于正常对照大鼠和肿瘤大鼠血清多胺的测定.结果提示:实验组肿瘤大鼠血清精胺和精脒水平显著高于正常对照大鼠和实验组未出现肿瘤大鼠血清精胺和精脒水平(P<0.05),正常对照组大鼠和实验组未出现肿瘤大鼠血清精胺和精脒水平间无显著性差异(P>0.05),各组间血清腐胺水平均无显著性差异(P>0.05).  相似文献   

12.
The in vitro enzymatic acetylation of the polyamines, spermidine and spermine, is described. The reaction is catalyzed by chromatin preparations from rat liver and kidney and is dependent on acetyl-CoA. Spermidine, spermine, and putrescine are each converted to the corresponding monoacetyl derivatives. s0.5 values of 0.5 ± 0.1, 1.0 ± 0.1, and 2.6 ± 0.7 mm (mean ± standard deviation) were obtained for spermidine, spermine, and putrescine, respectively. These values for s0.5 are similar to the concentrations of polyamines reported for tissues, and therefore, suggest the occurrence of polyamine acetylation in vivo. Evidence is also presented for the metabolism of acetylated polyamines by the 100,000g supernatant fraction of rat liver. The physiological function of polyamine acetylation is unknown, but the possibility of an effect on the association of polyamines with nucleic acids is discussed.  相似文献   

13.
1. The polyamines, putrescine, spermidine and spermine occur in free or acetylated form in a wide variety of living organisms. Putrescine is biosynthesized from ornithine or arginine; spermidine and spermine from methionine and either ornithine or arginine. 2. It is difficult to determine the intracellular distribution of polyamines since they are all very soluble in water and they are readily redistributed when cells are disrupted. Evidence suggests that a substantial proportion of the intracellular polyamines is attached to the ribosomes and that spermidine is not concentrated in the nucleus. 3. Polyamines bind strongly to both DNA and RNA. The strength of binding is:spermine > spermidine > putrescine. Polyamines stabilize the double helix of DNA, probably by forming a bridge across the narrow groove, by involving electrostatic bonding with the phosphate group. However, they do not appear to alter the overall conformation of DNA. Spermine enables single-stranded RNA to fold into a more compact configuration which is less susceptible to attack by ribonuclease. 4. Spermine and spermidine are able to stimulate the DNA primed RNA polymerase. They facilitate the removal of RNA from the DNA-RNA-enzyme complex. 5. Polyamines promote the association of ribosomal subunits and also the binding of amino acyl transfer RNA to ribosomes. They cause increased coding ambiguities in the process of translation in certain bacterial systems. 6. There is a close correlation between the intracellular concentration of spermidine and the rate of RNA synthesis both in rat liver and in Escherichia coli. Conditions which affect the rate of RNA synthesis also affect the concentration of free intracellular spermidine. 7. Bacteria usually contain putrescine and spermidine, whereas animal tissues contain spermine and spermidine. Spermidine probably fulfils the same role in both bacteria and animal tissues, but the presence of spermine, which is common to eucaryotes, is possibly associated with their more complex mechanisms for regulating RNA and protein synthesis.  相似文献   

14.
Polyamines as physiological substrates for transglutaminases   总被引:20,自引:0,他引:20  
When normal human blood lymphocytes are treated with mitogen in the presence of [3H]putrescine, label is incorporated into a few cellular proteins. Labeled N-(gamma-glutamyl) putrescine, N1-(gamma-glutamyl)spermidine, and N8-(gamma-glutamyl)spermidine were identified in exhaustive proteolytic digests of the cellular protein fraction. The enzyme-mediated clotting of rat seminal plasma to which 14C-labeled spermidine and spermine are added is accompanied by incorporation of the polyamines into a number of seminal plasma proteins. Proteolytic digests of the protein fraction from this clotted seminal plasma contain labeled N1-(gamma-glutamyl)spermidine, N8-(gamma-glutamyl)spermidine, N1,N8-bis(gamma-glutamyl)spermidine, N1-(gamma-glutamyl)spermine, and N1,N12-bis(gamma-glutamyl)spermine. These findings support a proposal that polyamines serve as substrates for transglutaminases both in cells and in an extracellular fluid. They show differences in cellular and extracellular substrate properties of the polyamines and indicate cross-linking through these amines in the extracellular system, but provide no evidence for such cross-linking in the cells.  相似文献   

15.
The behaviour of ornithine decarboxylase activity and the changes of polyamine (spermidine and spermine) and putrescine concentrations in the rat retina during the postnatal development have been studied.In the first 12 days of life, when cellular division first and then cellular differentiation are known to occur in rat retina, polyamine concentrations and enzymic activity rise to and maintain their maximum values.After 12 days of life, putrescine and polyamine retinal levels are drastically reduced, and adult values are already reached at the age of 16 days. The adult level of spermine is six to seven times greater than the low values obtained for both putrescine and spermidine. This relatively high content of spermine could be related to the mechanism of perpetual renewal of photoreceptor outer segments.  相似文献   

16.
Biogenic polyamines putrescine, spermidine, and spermine are essential molecules for proliferation in all living organisms. Direct interaction of polyamines with nucleic acids has been proposed in the past based on a series of experimental evidences, such as precipitation, thermal denaturation, or protection. However, binding between polyamines and nucleic acids is not clearly explained. Several interaction models have also been proposed, although they do not always agree with one another. In the present work, we make use of the Raman spectroscopy to extend our knowledge about polyamine-DNA interaction. Raman spectra of highly polymerized calf-thymus DNA at different polyamine concentrations, ranging from 1 to 50 mM, have been studied for putrescine, spermidine, and spermine. Both natural and heavy water were used as solvents. Difference Raman spectra have been computed by subtracting the sum of the separated component spectra from the experimental spectra of the complexes. The analysis of the Raman data has supported the existence of structural specificities in the interactions, at least under our experimental conditions. These specificities lead to preferential bindings through the DNA minor groove for putrescine and spermidine, whereas spermine binds by the major groove. On the other hand, spermine and spermidine present interstrand interactions, whereas putrescine presents intrastrand interactions in addition to exo-groove interactions by phosphate moieties.  相似文献   

17.
Molecular dynamics simulations with simulated annealing are performed on polyamine-DNA systems in order to determine the binding sites of putrescine, cadaverine, spermidine and spermine on A- and B-DNA. The simulations either contain no additional counterions or sufficient Na+ ions, together with the charge on the polyamine, to provide 73% neutralisation of the charges on the DNA phosphates. The stabilisation energies of the complexes indicate that all four polyamines should stabilise A-DNA in preference to B-DNA, which is in agreement with experiment in the case of spermine and spermidine, but not in the case of putrescine or cadaverine. The major groove is the preferred binding site on A-DNA of all the polyamines. Putrescine and cadaverine tend to bind to the sugar-phosphate backbone of B-DNA, whereas spermidine and spermine occupy more varied sites, including binding along the backbone and bridging both the major and minor grooves.  相似文献   

18.
It is well known that the addition of spermine or spermidine to culture medium containing ruminant serum inhibits cellular proliferation. This effect is caused by the products of oxidation of polyamines that are generated by serum amine oxidase. Among the products, we found that acrolein is a major toxic compound produced from spermine and spermidine by amine oxidase. We then analysed the level of polyamines (putrescine, spermidine and spermine) and amine oxidase activity in plasma of patients with chronic renal failure. It was found that the levels of putrescine and the amine oxidase activity were increased, whereas spermidine and spermine were decreased in plasma of patients with chronic renal failure. The levels of free and protein-conjugated acrolein were also increased in plasma of patients with chronic renal failure. An increase in putrescine, amine oxidase and acrolein in plasma was observed in all cases such as diabetic nephropathy, chronic glomerulonephritis and nephrosclerosis. These results suggest that acrolein is produced during the early stage of nephritis through kidney damage and also during uraemia through accumulation of polyamines in blood due to the decrease in their excretion into urine.  相似文献   

19.
Polyamine contents of various species of plants and fungi including Bryophyta, Pteridophyta, Gymnospermae, Ascomycota, Basidiomycota, and Lichenobionta were determined by the combination of six chromatographic techniques. Polyamines examined included putrescine, spermidine, spermine, 1,3-diaminopropane (diaminopropane), sym-norspermidine (norspermidine), sym-norspermine (norspermine), thermospermine, caldopentamine, homocaldopentamine, cadaverine, aminopropylcadaverine, sym-homospermidine (homospermidine), agmatine, and canavalmine. In addition to the widely occurring polyamines (putrescine, spermidine, and spermine), the "unusual" polyamines norspermidine and norspermine were found to be widely distributed in Bryophyta and Lichenobionta. These two polyamines were not detected in any species of Pteridophyta, Gymnospermae, and fungi even though their possible precursor, diaminopropane, was found in some species. Homospermidine was one of the major polyamines in Bryophyta and Lichenobionta, and was detected in most species of Pteridophyta and sporadically in higher plants. Agmatine was detected in most species of Bryophyta and in certain species of Gymnospermae. These data suggest that norspermidine, norspermine, and homospermidine can serve as chemical phylogenic and taxonomic markers in Plantae and Fungi.  相似文献   

20.
The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号