首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA sequencing studies have identified hundreds of non‐coding RNAs in bacteria, including regulatory small RNA (sRNA). However, our understanding of sRNA function has lagged behind their identification due to a lack of tools for the high‐throughput analysis of RNA–RNA interactions in bacteria. Here we demonstrate that in vivo sRNA–mRNA duplexes can be recovered using UV‐crosslinking, ligation and sequencing of hybrids (CLASH). Many sRNAs recruit the endoribonuclease, RNase E, to facilitate processing of mRNAs. We were able to recover base‐paired sRNA–mRNA duplexes in association with RNase E, allowing proximity‐dependent ligation and sequencing of cognate sRNA–mRNA pairs as chimeric reads. We verified that this approach captures bona fide sRNA–mRNA interactions. Clustering analyses identified novel sRNA seed regions and sets of potentially co‐regulated target mRNAs. We identified multiple mRNA targets for the pathotype‐specific sRNA Esr41, which was shown to regulate colicin sensitivity and iron transport in E. coli. Numerous sRNA interactions were also identified with non‐coding RNAs, including sRNAs and tRNAs, demonstrating the high complexity of the sRNA interactome.  相似文献   

2.
In this study, the full‐length neuropeptide Y (npy) complementary (c)DNA was cloned in ya fish Schizothorax prenanti. npy cDNA was composed of 789 nucleotides with a 288 nucleotide open reading frame encoding a protein of 96 amino acids. The deduced amino acid sequences contained a 28 amino acids signal peptide followed by a 36 amino acids mature neuropeptide Y (NPY). The npy mRNA was expressed mainly in the brain and eye as detected by real‐time quantitative polymerase chain reaction RT‐PCR (rt‐qPCR). The S. prenanti NPY was detectable from blastulation to hatch, suggesting that npy might be involved in the late embryonic development of S. prenanti. An experiment was conducted to determine the expression profile of npy during feeding of a single meal and during long‐term fasting. The expression level of npy in fed fish was significantly decreased at 0·5, 1·5, 3 and 9 h post‐feeding (hpf) than in fasting fish. Fasting for 14 days induced an increase in npy messenger (m)RNA expression in the brain. Overall, the results suggest that NPY is a conserved peptide that might be involved in the regulation of feeding and other physiological function in S. prenanti.  相似文献   

3.
The poly(A)+ RNA which accumulates during oogenesis in the amphibian Xenopus laevis is shown to be functional mRNA; the RNA was active in the mRNA-dependent “shift assay” for initiation sites in the rabbit reticulocyte lysate, and was an efficient template for protein synthesis in the wheat-germ cell-free system. Analysis of the in vitro protein products showed no differences between the coding properties of poly(A)+ RNA extracted from oocytes at all stages of development from previtellogenesis to maturity. In previtellogenic oocytes, the in vitro products of polysomal and of mRNP-associated poly(A)+ RNA were also identical. Neither was there any evidence for changes in the coding properties of the poly(A)+ mRNA of the oocyte. However, the patterns of oocyte in vivo protein synthesis changed markedly during early vitellogenesis. We conclude that the mRNP-associated poly(A)+ RNA present in mature oocytes constitutes the stored maternal mRNA, and that during oogenesis the coding composition of the poly(A)+ mRNA synthesised does not change markedly, while some form of translational control operates to direct the changing pattern of protein synthesis.  相似文献   

4.
Objective: This study was designed to investigate whether dietary fat and genetic background might differentially alter the expression of hypothalamic genes involved in food intake. Research Methods and Procedures: Three-month-old Osborne-Mendel (OM) and S5B/Pl rats were fed either a high-fat or a low-fat diet for 14 days. mRNA for neuropeptide Y (NPY), corticotrophin-releasing hormone, NPY Y-1 receptor and Y-5 receptor, and serotonin 2c (5-HT2c) receptors were measured using Northern blotting or ribonuclease protection assays. Results: OM rats showed an increased expression of NPY and corticotrophin-releasing hormone compared with S5B/Pl rats. The expression of NPY-Y1 and -Y5 receptor mRNA was significantly higher in the hypothalamus of OM rats compared with S5B/Pl rats. The expression of 5HT-2c receptor mRNA was significantly reduced in both strains of rats eating a high-fat diet when compared with the animals eating the low-fat diet. Discussion: These data suggest that over activity of the NPY system may contribute to the development of obesity in OM rats and that expression of the 5HT-2c receptor gene may be modulated by dietary fat.  相似文献   

5.
6.
Objective: To model how consuming a low‐carbohydrate (LC) diet influences food intake and body weight. Research Methods and Procedures: Food intake and body weight were monitored in rats with access to chow (CH), LC‐high‐fat (HF), or HF diets. After 8 weeks, rats received intracerebroventricular injections of a melanocortin agonist (melanotan‐II) and antagonist (SHU9119), and feeding responses were measured. At sacrifice, plasma hormones and hypothalamic expression of mRNA for proopiomelanocortin (POMC), melanocortin‐4 receptor, neuropeptide Y (NPY), and agouti related protein (AgRP) were assessed. A second set of rats had access to diet (chow or LC‐HF) for 4 weeks followed by 24 h food deprivation on two occasions, after which food intake and hypothalamic POMC, NPY, and AgRP mRNA expression were measured. Results: HF rats consumed more food and gained more weight than rats on CH or LC‐HF diets. Despite similar intakes and weight gains, LC‐HF rats had increased adiposity relative to CH rats. LC‐HF rats were more sensitive to melanotan‐II and less sensitive to SHU9119. LC‐HF rats had increased plasma leptin and ghrelin levels and decreased insulin levels, and patterns of NPY and POMC mRNA expression were consistent with those of food‐deprived rats. LC‐HF rats did not show rebound hyperphagia after food deprivation, and levels NPY, POMC, and AgRP mRNA expression were not affected by deprivation. Discussion: Our results demonstrate that an LC diet influences multiple systems involved in the controls of food intake and body weight. These data also suggest that maintenance on an LC‐HF diet affects food intake by reducing compensatory responses to food deprivation.  相似文献   

7.
8.
9.
10.
11.
Hypothalamic appetite regulators neuropeptide Y (NPY) and pro‐opiomelanocortin (POMC) are modulated by glucose. This study investigated how maternal obesity disturbs glucose regulation of NPY and POMC, and whether this deregulation is linked to abnormal hypothalamic glucose uptake‐lactate conversion. As post‐natal high‐fat diet (HFD) can exaggerate the effects of maternal obesity, its additional impact was also investigated. Female Sprague Dawley rats were fed a HFD (20 kJ/g) to model maternal obesity. At weaning, male pups were fed chow or HFD. At 9 weeks, in vivo hypothalamic NPY and POMC mRNA responses to acute hyperglycemia were measured; while hypothalami were glucose challenged in vitro to assess glucose uptake‐lactate release and related gene expression. Maternal obesity dampened in vivo hypothalamic NPY response to acute hyperglycemia, and lowered in vitro hypothalamic glucose uptake and lactate release. When challenged with 20 mM glucose, hypothalamic glucose transporter 1, monocarboxylate transporters, lactate dehydrogenase‐b, NPY and POMC mRNA expression were down‐regulated in offspring exposed to maternal obesity. Post‐natal HFD consumption reduced in vitro lactate release and monocarboxylate transporter 2 mRNA, but increased POMC mRNA levels when challenged with 20 mM glucose. Overall, maternal obesity produced stronger effects than post‐natal HFD consumption to impair hypothalamic glucose metabolism. However, they both disturbed NPY response to hyperglycemia, potentially leading to hyperphagia.

  相似文献   


12.
ADAR2 transgenic mice misexpressing the RNA editing enzyme ADAR2 (Adenosine Deaminase that act on RNA) show characteristics of overeating and experience adult onset obesity. Behavioral patterns and brain changes related to a possible addictive overeating in these transgenic mice were explored as transgenic mice display chronic hyperphagia. ADAR2 transgenic mice were assessed in their food preference and motivation to overeat in a competing reward environment with ad lib access to a running wheel and food. Metabolic activity of brain and peripheral tissue were assessed with [18F] fluorodeoxyglucose positron emission tomography (FDG‐PET) and RNA expression of feeding related genes, ADAR2, dopamine and opiate receptors from the hypothalamus and striatum were examined. The results indicate that ADAR2 transgenic mice exhibit, (1) a food preference for diets with higher fat content, (2) significantly increased food intake that is non‐distractible in a competing reward environment, (3) significantly increased messenger RNA (mRNA) expressions of ADAR2, serotonin 2C receptor (5HT2CR), D1, D2 and mu opioid receptors and no change in corticotropin‐releasing hormone mRNAs and significantly reduced ADAR2 protein expression in the hypothalamus, (4) significantly increased D1 receptor and altered bioamines with no change in ADAR2, mu opioid and D2 receptor mRNA expression in the striatum and (5) significantly greater glucose metabolism in the hypothalamus, brain stem, right hippocampus, left and right mid brain regions and suprascapular peripheral tissue than controls. These results suggest that highly motivated and goal‐oriented overeating behaviors of ADAR2 transgenic mice are associated with altered feeding, reward‐related mRNAs and hyperactive brain mesolimbic region .  相似文献   

13.
14.
Abstract

Neuropeptide Y (NPY) recognition by the human neuroblastoma cell lines SiMa, Kelly, SH‐SY5Y, CHP‐234, and MHH‐NB‐11 was analyzed in radioactive binding assays using tritiated NPY. For the cell lines CHP‐234 and MHH‐NB‐11 binding of [3H]propionyl‐NPY was observed with Kd‐values of 0.64 ± 0.07 nM and 0.53 ± 0.12 nM, respectively, determined by saturation analysis with non‐linear regression. The receptor subtype was determined by competition analysis using the subtype selective NPY analogues [Leu31, Pro34]‐NPY (NPY‐Y1, NPY‐Y5), [Ahx5‐24]‐NPY (NPY‐Y2), [Ala31, Aib32]‐NPY (NPY‐Y5), NPY [3‐36] (NPY‐Y2, NPY‐Y5), and NPY [13‐36] (NPY‐Y2). Both cell lines, CHP‐234 and MHH‐NB‐11, the latter one being characterized for NPY receptors for the first time, showed exclusive expression of NPY‐Y2 receptors. In both cell lines binding of NPY induced signal transduction, which was monitored as reduction of forskolin‐induced cAMP production in an ELISA.  相似文献   

15.
RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp‐1 mRNA during the IRE‐1 branch of the unfolded protein response. Without RtcB, protein stress results in the accumulation of unligated xbp‐1 mRNA fragments, defects in the unfolded protein response, and decreased lifespan. RtcB also ligates endogenous pre‐tRNA halves, and RtcB mutants have defects in growth and lifespan that can be bypassed by expression of pre‐spliced tRNAs. In addition, animals that lack RtcB have defects that are independent of tRNA maturation and the unfolded protein response. Thus, RNA ligation by RtcB is required for the function of multiple endogenous target RNAs including both xbp‐1 and tRNAs. RtcB is uniquely capable of performing these ligation functions, and RNA ligation by RtcB mediates multiple essential processes in vivo.  相似文献   

16.
pRb is frequently inactivated in tumours by mutations or phosphorylation. Here, we investigated whether pRb plays a role in obesity. The Arcuate nucleus (ARC) in hypothalamus contains antagonizing POMC and AGRP/NPY neurons for negative and positive energy balance, respectively. Various aspects of ARC neurons are affected in high‐fat diet (HFD)‐induced obesity mouse model. Using this model, we show that HFD, as well as pharmacological activation of AMPK, induces pRb phosphorylation and E2F target gene de‐repression in ARC neurons. Some affected neurons express POMC; and deleting Rb1 in POMC neurons induces E2F target gene de‐repression, cell‐cycle re‐entry, apoptosis, and a hyperphagia‐obesity‐diabetes syndrome. These defects can be corrected by combined deletion of E2f1. In contrast, deleting Rb1 in the antagonizing AGRP/NPY neurons shows no effects. Thus, pRb‐E2F1 is an obesity suppression mechanism in ARC POMC neurons and HFD‐AMPK inhibits this mechanism by phosphorylating pRb in this location.  相似文献   

17.
18.
An experiment was performed to examine the effect of dietary copper supplementation on weight gain, neuropeptide Y (NPY) concentration and NPY mRNA expression level in the hypothalamus of pigs. Forty-five crossbred pigs were randomly assigned to three groups of 15 pigs, each comprising five replicates of 3 animals. Pigs were allocated to diets that contained 10 mg/kg (as a control), 125 and 250 mg/kg copper as CuSO4. Live weight gain and feed conversion efficiency was determined at the end of the experiment and five pigs, selected at random from each group, were slaughtered and the hypothalami collected for determination of NPY concentration and NPY mRNA expression level. The results showed that average daily gain (ADG) and average daily feed intake (ADFI) were higher and feed:gain (F:G) ratio was lower in pigs fed the diets with 125 and 250 mg/kg copper (P<0.05), respectively, than in pigs fed a diet with 10 mg/kg copper, but that there was no statistically significant difference in growth performance between animals of the 125 mg/kg and the 250 mg/kg copper groups. Furthermore, pigs fed diets with 125 and 250 mg/kg copper had higher NPY concentrations and NPY mRNA expression levels in their hypothalamus than control animals. The data indicated that 125 and 250 mg/kg copper gave similar responses in terms of weight gain, whilst high dietary copper could enhance NPY concentration and NPY mRNA expression level in the hypothalamus of pigs. High dietary copper appears to increase feed intake and promote weight gain by enhancing NPY concentration and NPY mRNA expression level in the hypothalamus of pigs.  相似文献   

19.
Adenosine deaminases acting on RNA (ADARs) are best known for altering the coding sequences of mRNA through RNA editing, as in the GluR‐B Q/R site. ADARs have also been shown to affect RNA interference (RNAi) and microRNA processing by deamination of specific adenosines to inosine. Here, we show that ADAR proteins can affect RNA processing independently of their enzymatic activity. We show that ADAR2 can modulate the processing of mir‐376a2 independently of catalytic RNA editing activity. In addition, in a Drosophila assay for RNAi deaminase‐inactive ADAR1 inhibits RNAi through the siRNA pathway. These results imply that ADAR1 and ADAR2 have biological functions as RNA‐binding proteins that extend beyond editing per se and that even genomically encoded ADARs that are catalytically inactive may have such functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号