首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
TheV max of the uptake of choline was increased in nerve cell cultures by lowering (from 7.4 to 6.5) or increasing (from 7.4 to 8.1) the pH. In neurons no effect was observed on the value of theK m's of the uptake of either the apparent high or low affinity components. In glial cells only a low affinity component was measured at pH 6.5 and diffusion was observed at pH 8.1. An excess of K+ ions in the incubation medium reproduced the increase inV max observed with changes in pH suggesting a possible dependence of the uptake of choline upon the H+ and OH gradients. Taking into account the characteristics already known of the transport of choline into nerve cells, such a dependence adds new insight in the mechanisms underlying the transport and indicates another possible regulation of choline entry, eventually directed towards the synthesis of acetylcholine.  相似文献   

2.
A study was made of the time course and kinetics of [3H]GABA uptake by dispersed cell cultures of postnatal rat cerebellum with and without neuronal cells. The properties of GABA neurons were calculated from the biochemical difference between the two types of cultures. It was found that for any given concentration of [3H]GABA, or any time up to 20 min, GABA neurons in cultures 21 days in vitro had an average velocity of uptake several orders of magnitude greater than that of nonneuronal cells. In addition, the apparent Km values for GABA neurons for high and low affinity uptake were 0.33 × 10−6 M and 41.8 × 10−4 M, respectively. For nonneuronal cells, the apparent Km for high affinity uptake was 0.29 × 10−6 M. The apparent Vmax values for GABA neurons for high and low affinity uptake were 28.7 × 10−6 mol/g DNA/min and 151.5 mmol/g DNA/min, respectively. For nonneuronal cells, the apparent Vmax for high affinity uptake was 0.06 × 10−6 mol/g DNA/min. No low affinity uptake system for nonneuronal cells could be detected after correcting the data for binding and diffusion. By substituting the apparent kinetic constants in the Michaelis-Menten equation, it was determined that for GABA concentrations of 5 × 10−9 M to 1 mM or higher over 99% of the GABA should be accumulated by GABA neurons, given equal access of all cells to the label. In addition, high affinity uptake of [3H]GABA by GABA neurons was completely blocked by treatment with 0.2 mM ouabain, whereas that by nonneuronal cells was only slightly decreased. Most (75–85%) of the [3H]GABA (4.4 × 10−6 M) uptake by both GABA neurons and nonneuronal cells was sodium and temperature dependent.  相似文献   

3.
The transport of L-alanine in human diploid fibroblasts was investigated. Transport measurements were performed on subcultures between the third and eighth passages with subconfluent cells growing on glass coverslips. Kinetic analysis of approximate initial rates of transport at substrate concentrations from 0.05 to 10 mmole/liter indicate the presence of two distinguishable systems. The high affinity system has a Km of 0.24 mmole/liter and a Vmax of 6.4 nmole/100 μg protein/2 min. For the low affinity system, the contribution of the high affinity system to the uptake must absolutely be taken into account. The Km and Vmax values, obtained by using a computer program, are a Km of 15.0 mmole/liter and a Vmax of 14.7 nmole/100 μg protein/2 min. For alanine concentrations below 1 mmole/liter, the contribution of the Na+-independent uptake is less than 10%, and the kinetic constants of the high affinity system are in the same range if this contribution is taken into account. On the contrary the influence of a diffusion-like process is more significant on the low affinity system whose Km is about 49 mmole/liter after subtraction of the Na+-independent uptake from the experimental velocities. Inhibition studies were performed with NCH3-alanine. They permitted us first to confirm the existence of system A in cultured human fibroblasts in agreement with two recent works and second to show how this system contributes to L-alanine uptake. This contribution seems very small in low concentrations but it rises as the concentrations increase.  相似文献   

4.
Kinetic parameters for high affinity [HA] uptake in vitro in synaptosomes from different mouse brain regions were investigated. Vmax was highest in the striatum [200 pmol.· mg protein?1 · 4 min?1], followed by the cortex [111 pmol · mg protein?1 · 4 min?1], hippocampus [63 pmol · mg protein?1 · 4 min?1], midbrain [21 pmol · mg protein?1 · 4 min?1] and, lowest, medulla oblongata [5 pmol · mg protein?1 · 4 min?1]. Km was about the same in all brain regions [0.9–1.4 μM]. No sign of HA uptake was detected in synaptosomes from the cerebellum. A clear relationship between Vmax for synaptosomal HA uptake of Ch in vitro and apparent turnover of ACh in vivo was found between the brain regions. Administration of oxotremorine [1 mg·kg?1 i.p.] decreased Vmax for HA uptake of Ch by 60% in the cortex and hippocampus, by 50% in the striatum and by 20% in the midbrain. This effect is in accordance with the previously observed marked decrease in turnover of ACh in these brain regions following oxotremorine treatment.  相似文献   

5.
Blood-brain barrier (BBB) transport of choline and certain choline analogs was studied in adult and suckling rats, and additionally compared in the paleocortex and neocortex of adult rats. Saturable uptake was characterized by a single kinetic system in all cases examined, and in adult rat forebrains we determined a Km= 442 ± 60 μM and Vmax= 10.0 ± 0.6 nmol min-1 g-1. In 14–15-day-old suckling forebrains a similar Km (= 404 ± 88 μM) but higher Vmax (= 12.5 ± 1.5 nmol min-1 g-1) was determined. When choline uptake was compared in two regions of the forebrain, similar Michaelis-Menten constants were determined but a higher uptake velocity was found in the neocortex (i.e. neocortex Km= 310 ± 103 μM and Vmax= 12.6 ± 2.8 nmol min-1g-1; paleocortex Km= 217 ± 76 μM and Vmax= 7.2 ± 1.5 nmol min-1 g-1). Administration of radiolabelled choline at low (5 μM) and high (100 μM) concentrations, followed by microwave fixation 60 s later and chloroform-methanol-water separations of the homogenized brain did not suggest a relationship between concentration and the appearance of label in lipid or aqueous fractions as observed in another in-vitro study elaborating two-component kinetics of choline uptake. It was observed that 60s after carotid injection 12–14% of the radiolabel in the ipsilateral cortex was found in the chloroform-soluble fraction. Hemicholinium-3 (Ki= 111 μM), dimethylaminoethanol (Ki= 42 μM), tetraethyl ammonium chloride, tetramethyl ammonium chloride, 2-hydroxyethyl triethylammonium iodide, carnitine, normal rat serum, and to a lesser extent lithium and spermidine all inhibited choline uptake in the BBB. Unsubstituted ammonium chloride and imipramine did not inhibit choline uptake. No difference was observed in blood-brain barrier choline uptake of unanesthetised, carotid artery-catheterized animals, and comparable sodium pentobarbital-anesthetized controls.  相似文献   

6.
The species Urtica dioica L., Plantago major ssp. major L., Plantago lanceolata L., Hypochaeris radicata L. ssp. radicata and Hypochaeris radicata ssp. ericetorum Van Soest were grown under high and low nutrient conditions (1/4 Hoagland and 2% of 1/4 Hoagland further called the 100% and 2% treatment, containing 3.75 mM NO-3 and 0.075 mM NO-3, respectively). After a certain period half of the plants were transferred from low to high or high to low nutrients, yielding the 100%/2% and the 2%/100% treatments. The kinetics of nitrate uptake in the range of system I of the five species grown under the different nutrient conditions were measured during a three week experimental period. The nitrate uptake of all the species showed the characteristic features of Michaelis-Menten kinetics. Under low nutrient conditions the apparent Vmax of U. dioica expressed per g dry root was lower than under high nutrient conditions. For H. radicata ssp. radicata and for H. radicata ssp. ericetorum the reverse was found. The Vmax values of P. major ssp. major were almost the same for the two treatments. The apparent Vmax in young plants of P. lanceolata was higher in the 100% treatment than in 2%; whereas the reverse was found in mature plants. The results are explained in relation to the relative growth rate, the shoot to root ratio and the natural environment of the species. The apparent Km values were not influenced by the different treatments. Differences in Km between the species, if any, were very small. It is suggested that the Vmax is a more important parameter for the distribution of plant species in the field than the Km. The rate of nitrogen accumulation was calculated from growth data and the contents of nitrate and reduced nitrogen. It is concluded that the Vmax of system I for nitrate uptake in most cases was sufficient to explain the observed growth rates.  相似文献   

7.
The kinetics of the high affinity uptake system for L-tryptophan (L-Try)have been measured over 24 hr in cortical synaptosome preparations of rat brain. Both the Km and Vmax, of the uptake process showed a statistically significant 24 hr variation. The highest Km value, 6.71 ± 10-5 M, was measured at the beginning of the light phase and the lowest value, 4.23 ± 10-5 M, 6 hr into the dark phase. Vmax was highest at the end of the dark phase (10.43 nmol/mg/5 min) and lowest (4.80 nmol/mg/5 min) 3 hr into the dark phase. In contrast, there was no variation over 24 hr in the Vmax/Km ratio. These results suggest that the high affinity uptake process serves to ensure a constant rate of L-tryptophan entry into the neuron in the face of circadian or ultradian variations in extracellular concentration of tryptophan.  相似文献   

8.
In the range 10?6M - 5 × 10?2M uptake of K+ in excised roots of barley (Hordeum vulgare L. cv. Herta) with low and high K content could in both cases be represented by an isotherm with four phases. Uptake, especially in the range of the lower phases, was reduced in high K roots through decreases in Vmax and increases in Km. Similar data for other plants are also shown to be consistent with multiphasic kinetics. The concentrations at which transitions occurred were not affected by the K status, indicating the existence of separate uptake and transition sites. Uptake was markedly reduced in the presence of 10?5M 2,4-dinitrophenol, especially at low K+ concentrations, but the isotherms remained multiphasic. This contraindicates major contributions from a non-carrier-mediated, passive flux. A tentative hypothesis for multiphasic ion uptake envisions a structure which changes conformation as a result of all-or-none changes in a separate transition site. The structure is “tight” at low external ion concentrations (low Vmax. low Km. active uptake, allosteric regulation) and “loose” at high concentrations (high Vmax- high Km- facilitated diffusion, no regulation).  相似文献   

9.
Our primary objective was to determine if a relationship existed between seasonal change in phytoplankton and high affinity for (K m) or uptake rates (V maX) of ammonium which might explain seasonal phytoplankton succession in oligotrophic ecosystems. We measured ammonium uptake using [14C]-methylamine and estimatedK m andV max using Hanes Plots at 2-week intervals during 6 months of thermal stratification in Mountain lake, Virginia (37° 22 N, 80° 32 W). Community composition, nutrient levels, and other variables were determined in all uptake experiments. A second objective was to determine if ammonium was preferentially utilized over nitrate and to characterize further the ammonium transport system.V max increased steadily from May until the end of July, each increase coinciding with major changes in the phytoplankton community. Cryptophyceans dominated in May, chlorophyceans in June and July, and cyanophyceans from the end of July to late October. With cyanophycean dominance,V max declined until chlorophyceans reestablished dominance in late October. By contrast,K m values increased from May to the end of July, but thereafter showed no correlation. Acetylene reduction experiments showed no nitrogen fixation during late summer and fall when blue-green algae were present. Preference for ammonium was implied also by negative nitrate reductase assays. Overall, the coincidence ofV max andK m values for [14C]-methylamine uptake and changing phytoplankton community structure suggests the possibility that successive algal communities may be changing as a result of specific species differences in ammonium affinity and uptake rates.  相似文献   

10.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   

11.
A recently described procedure of freezing and thawing, which allows retention of metabolic and functional integrity, has been applied in the study of serotonin and dopamine uptake into frozen rat and post mortem human frozen tissue. TheK m andV max for the serotonin uptake into human hypothalamus were estimated to be 0.12 M and 0.03 nmol/g/min respectively. TheK m andV max for the dopamine uptake into human putamen were estimated to be 0.28 M and 0.13 nmol/g/min respectively. The results indicate that the freezing procedure does not affect the uptake sites for these transmitters. The storage time before freezing is however of importance for theV max value. TheK m value for the uptake, on the other hand, seems to be rather resistant to storage time before freezing.  相似文献   

12.
KtrAB from Vibrio alginolyticus is a recently described new type of high affinity bacterial K+ uptake system. Its activity assayed in an Escherichia coli K+ uptake negative mutant depended on Na+ ions (Km of 40 μM). Subunit KtrB contains four putative P-loops. The selectivity filter from each P-loop contains a conserved glycine residue. Residue Gly-290 from the third P-loop selectivity filter in KtrB was exchanged for Ala, Ser or Asp. KtrB variants Ser-290 and Asp-290 were without activity. In contrast, KtrB variant Ala-290 was still active. This variant transported K+ with a two orders of magnitude decrease in apparent affinity for both K+ and Na+ with little effect on Vmax.  相似文献   

13.
In the present study, direct evidence is given to SAMe capability of crossing the membrane of isolated rat hepatocytes. The kinetics of SAMe uptake is biphasic: a fast phase being completed in less than 15 sec and a slower one with an apparent Km of 8.33 μM and a Vmax of 10.6 pmol/min/mg protein. Both processes are pH and temperature dependent. Analysis of the fast phase by a Scatchard plot discloses two sets of binding sites of high and low affinity, respectively. Experiments carried out incubating isolated hepatocytes with double-labelled SAMe (methyl-3H, carboxyl-14C) have shown that about 70% of SAMe uptake by the cell is rapidly decarboxylated.  相似文献   

14.
The stereochemistry of sulfate conjugation of isoproterenol (ISO) was examined with human liver, intestine, and platelets as the phenolsulfotransferase (PST) enzyme source and PAP35S as the cosubstrate. With the hepatic cytosol, two distinct sulfation reactions were identified, a high affinity reaction (Km 5 to 50 μM) and a low affinity reaction (Km 360 to 2,900 μM). The efficiency of sulfation (Vmax/Km) for both reactions was 5-fold higher for (+)- than for (?)-ISO. When the hepatic PSTs were resolved by ionexchange chromatography, it could be shown that the high affinity reaction was catalyzed by the monoamine (M) form and the low affinity reaction by the phenol (P) form of PST. Only the high affinity (M form) sulfation was detected in the jejunal cytosol with a Vmax/Km value 6.1-fold higher for (+)- than for (?)-ISO. Finally the platelet, as a potentially useful model tissue, also demonstrated only the high affinity M form reaction with a Vmax/Km value 5.7-fold higher for (+)- than for (?)-ISO. In summary, this study has shown that sulfation of ISO by PSTs in various human tissues is stereoselective and favors the inactive (+)-enantiomer over the active (?)-enantiomer by about 5-fold, a finding which should be considered in the therapeutic use of chiral drugs cleared by sulfate conjugation. © 1993 Wiley-Liss, Inc.  相似文献   

15.
High affinity transport of choline into synaptosomes of rat brain   总被引:33,自引:13,他引:20  
—The accumulation of [3H]choline into synaptosome-enriched homogenates of rat corpus striatum, cerebral cortex and cerebellum was studied at [3H]choline concentrations varying from 0.5 to 100 μm . The accumulation of [3H]choline in these brain regions was saturable. Kinetic analysis of the accumulation of the radiolabel was performed by double-reciprocal plots and by least squares iterative fitting of a substrate-velocity curve to the data. With both of these techniques, the data were best satisfied by two transport components, a high affinity uptake system with Km. values of 1.4 μM (corpus striatum), and 3.1 μM (ceμ(cerebral cortex) and a low affinity uptake system with respective Km. values of 93 and 33 μM for these two brain regions. In the cerebellum choline was accumulated only by the low affinity system. When striatal homogenates were fractionated further into synaptosomes and mitochondria and incubated with varying concentrations of [3H]choline, the high affinity component of choline uptake was localized to the synaptosomal fraction. The high affinity uptake system required sodium, was sensitive to various metabolic inhibitors and was associated with considerable formation of [3H]acetylcholine. The low affinity uptake system was much less dependent on sodium, and was not associated with a marked degree of [3H]acetylcholine formation. Hemicholinium-3 and acetylcholine were potent inhibitors of the high affinity uptake system. A variety of evidence suggests that the high affinity transport represents a selective accumulation of choline by cholinergic neurons, while the low affinity uptake system has some less specific function.  相似文献   

16.
The uptake ofl-andd-aspartate was studied in astrocytes cultured from prefrontal cortex and in granule cells cultured from cerebellum. A high affinity uptake system forl- andd-aspartate was found in both cell types, and the two stereoisomers exhibited essentially the sameK m - andV max -values in bouth astrocytes (l-aspartate:K m 77 μM;V max 11.8 nmol×min?1×mg?1;d-aspartate:K m 83 μM;V max 14.0 nmol×min?1×mg?1) and granule cells (l-aspartate:K m 32 μM;V max 2.8 nmol ×min?1×mg?1;d-aspartate:K m 26 μM;V max 3.0 nmol×min?1×mg?1). To investigate whetherl-glutamate,l-aspartate andd-aspartate use the same uptake system a detailed kenetic analysis was performed. The uptake kinetics of each one of the three amino acids was studied in the presence of the two other amino acids, and no essential differences between the uptake characteristics of the amino acids were found. In addition to the uptake studies the release ofD-aspartate from cerebellar granule cells was investigated and compared withl-glutamate release. A Ca2+-dependent, K+-induced release was found for both amino acids.  相似文献   

17.
The raz1 mutant of Arabidopsis thaliana (L.) Heynh. has been selected as resistant to the toxic proline analogue, azetidine-2-carboxylic acid (2AZ). Seedlings of the mutant tolerated fivefold higher concentrations of 2AZ (ED50 = 0.25 mM) than the wild-type seedlings (ED50 = 0.05 mM). The mutant gene was found to be semi-dominant and the corresponding RAZ1 locus was mapped on chromosome 5 at 69.6±1.8 cM. The resistance to 2AZ could be fully and exclusively accounted for by the lower uptake rate of the proline analogue in the mutant. The influx of L-proline in roots of wild-type seedlings could be dissected into two components: (i) a component with a high affinity and a low capacity for l-proline (K m≈20 gmM, V max≈60 nmol·(g FW)-1·h-1) and also a high affinity for L-2AZ (K i≈40 μM) and (ii) a low-affinity, high-capacity component (K m≈5 mM: V max = 1300 nmol·(g FW)-1·h-1). Clearly, the raz1 mutation affects the activity of a high-affinity transporter, because the high-affinity uptake of proline in the mutant was at least fivefold lower than in the wild-type, whereas the low-affinity uptake was unchanged.  相似文献   

18.
The uptake of glutamine was studied in Bacillus pasteurii DSM 33. Only one uptake system was detected in the concentration range studied (between 1 and 100 M glutamine) which exhibited Michaelis-Menten saturation kinetics, with an apparent K t of 10.7 (±3.5) M glutamine. The uptake was sodium-dependent (apparent K t=0.2 mM Na+); none of several monovalent cations tested was able to replace sodium in the uptake reaction. Ionophores interfering with proton, sodium or potassium gradients across membranes strongly inhibited uptake of glutamine. Low uptake rates correlating with low potassium content and an acidic cytoplasm were measured in cells grown at high ammonium1 concentrations. Ammonium and other permeant amines as well as potassium stimulated the uptake reaction in these cells, leading to an increase of up to 100-fold in V max without affecting the affinity of the uptake system. In cells grown at low concentrations of ammonium, an alkaline cytoplasm and both high glutamine uptake activities and potassium content were measured; the uptake reaction was not further stimulated by permeant amines or potassium in such cells. Growth of the strain was inhibited by Tris at high concentrations; this inhibition was relieved by the addition of increasing amounts of ammonium.Abbreviations CCCP carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide This work is dedicated to Prof. Dr. H. Kaltwasser on the occasion of his 60th birthday  相似文献   

19.
l-Glutamate has an excitatory and cytotoxic effect on the central nervous system. It was shown previously that norepinephrine and dopamine uptake and release were affected by in vivo administration of glutamate to adult rats. The kinetic parameters, Km and Vmax of [14C]DA uptake and release were measured on synaptosomal and slices from caudate nucleus under in vitro conditions at different glutamate concentrations. Results showed an important increase in [14C]DA uptake on synaptosomal (> 100%) and slices by lower glutamate concentrations, the affinity for transport system was increased (100%) and its release of high potassium evoked was also increased at 0.5 μM of glutamate. The results suggest the possibility that glutamate may modify DA uptake and release interacting with the DA transporter complex at the synaptic level.  相似文献   

20.
Kinetics of P absorption were investigated in mycorrhizal (Glomus fasciculatus) and nonmycorrhizal tomato (Lycopersicon esculentum) roots to determine why increased ion absorption by mycorrhizae occurs. Initial rates of absorption of 32P were measured at 1 to 100 micromolar KH2PO4 (pH 4.6). Absorption rates of mycorrhizae were about twice those of control roots. Augustinsson-Hofstee analysis yielded two linear phases; Vmax and Km were calculated for each phase. In the low phase (1 to 20 micromolar), Vmax values for the mycorrhizal and nonmycorrhizal roots were each 0.10 micromoles P per gram fresh weight per hour while Km values were 1.6 and 3.9 micromolar KH2PO4, respectively. For the high phase (30 to 100 micromolar), Vmax values for mycorrhizal and nonmycorrhizal roots were 0.32 and 0.25 micromoles P per gram fresh weight per hour and Km values were 35 and 42 micromolar, respectively. These results indicate that at the lower phase concentrations, similar to those expected in most soil solutions, a major factor contributing to the increased uptake was an apparent greater affinity of the absorbing sites for H2PO4 (lower Km).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号