首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
2.
Histone lysine acetylation, normally associated with euchromatin and active genes, is regulated by different families of histone acetyltransferases (HATs). A single Plasmodium falciparum MYST (PfMYST) HAT was expressed as a long and a short version in intraerythrocytic stages. Whereas the recombinant PfMYST expressed in prokaryotes and insect cells did not show HAT activity, recombinant PfMYST purified from the parasites exhibited a predilection to acetylate histone H4 in vitro at K5, K8, K12 and K16. Tagging PfMYST with the green fluorescent protein at the C‐terminus showed that PfMYST protein was localized in both the nucleus and cytoplasm. Consistent with the importance of H4 acetylation in var gene expression, PfMYST was recruited to the active var promoter. Attempts to disrupt PfMYST were not successful, suggesting that PfMYST is essential for asexual intraerythrocytic growth. However, overexpression of the long, active or a truncated, non‐active version of PfMYST by stable integration of the expression cassette in the parasite genome resulted in changes of H4 acetylation and cell cycle progression. Furthermore, parasites with PfMYST overexpression showed changes in sensitivity to DNA‐damaging agents. Collectively, this study showed that PfMYST plays important roles in cellular processes such as gene activation, cell cycle control and DNA repair.  相似文献   

3.
Phosphorus availability is often limiting for plant growth. However, little is known of the pathways and mechanisms that regulate phosphorus (P) uptake and distribution in plants. We have developed a screen based on the induction of secreted root acid phosphatase activity by low‐P stress to identify mutants of Arabidopsis thaliana with defects in P metabolism. Acid phosphatase activity was detected visually in the roots of A. thaliana seedlings grown in vitro on low‐P medium, using the chromogenic substrate, 5‐bromo‐4‐chloro‐3‐indolyl‐phosphate (BCIP). In low‐P stress conditions the roots of wild‐type plants stained blue, as the induced root acid phosphatase cleaved BCIP to release the coloured product. Potential mutants were identified as having white, or pale blue, roots under these conditions. Out of approximately 79 000 T‐DNA mutagenised seedlings screened, two mutants with reduced acid phosphatase staining were further characterised. Both exhibited reduced growth and differences in their P contents when compared to wild‐type A. thaliana. The mutant with the most severe phenotype, pho3, accumulated high levels of anthocyanins and starch in a distinctive visual pattern within the leaves. The phenotypes of these mutants are distinct from two previously identified phosphorus mutants (phol and pho2) and from an acid phosphatase deficient mutant (pupl) of A. thaliana. This suggested that the screening method was robust and might lead to the identification of further mutants with the potential for increasing our understanding of P nutrition.  相似文献   

4.
Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca2+) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca2+ imaging showed that LZ treatment completely abolished Ca2+ oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP3–Ca2+ and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.  相似文献   

5.
6.
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain‐like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain‐like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596‐containing parasite‐derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity‐purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C‐terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non‐enzymatic role in the P. falciparum blood‐stage life cycle.  相似文献   

7.
Summary St. John's wort (Hypericum perforatum cv. Anthos) is a medicinal plant with historical and anecdotal evidence of efficacy as an anti-depressant. Recent research has demonstrated an active biosynthetic pathway leading to the production of the mammalian neurohormone melatonin in St. John's wort plantlets. The objective of the current study was to assess the physiological role of melatonin and related indoleamines in plant morphogenesis. In the initial experiments, two of the indoleamines; serotonin and melatonin, were supplemented to the culture medium. In subsequent research, six inhibitors of auxin and indoleamine action or transport, 2,3,5-triiodobenzoic acid, p-chlorophenoxyisobutyric acid, p-chlorophenyl-alanine, d-amphetamine, fluoxetine (ProzacTM), and methylphenidate (RitalinTM), were included in a culture medium in the presence or absence of the auxin, indoleacetic acid (IAA). The rate of de novo root and shoot organogenesis and the endogenous concentrations of auxin and indoleamines were determined in cultured explants. Significant reductions in de novo root regeneration were found to correspond with decreases in the pool of both IAA and melatonin. An increase in the endogenous concentration of melatonin was correlated with an increase in de novo root formation, and increased serotonin levels corresponded to increased shoot formation on the explants. Our findings provide the first evidence that a balance of the endogenous concentration of serotonin and melatonin may modulate plant morphogenesis in vitro.  相似文献   

8.
9.
Although Selenium (Se) stress is relatively well known for causing growth inhibition, its effects on primary metabolism remain rather unclear. Here, we characterized both the modulation of the expression of specific genes and the metabolic adjustments in Arabidopsis thaliana in response to changes in Se level in the soil. Se treatment culminated with strong inhibition of both shoot and root growth. Notably, growth inhibition in Se‐treated plants was associated with an incomplete mobilization of starch during the night. Minor changes in amino acids levels were observed in shoots and roots of plants treated with Se whereas the pool size of tricarboxylic acid (TCA) cycle intermediates in root was not altered in response to Se. By contrast, decreased levels of organic acids involved in the first part of the TCA cycle were observed in shoots of Se‐treated plants. Furthermore, decreased expression levels of expansins and endotransglucosylases/endohydrolases (XHTs) genes were observed after Se treatment, coupled with a significant decrease in the levels of essential elements. Collectively, our results revealed an exquisite interaction between energy metabolism and Se‐mediated control of growth in Arabidopsis thaliana to coordinate cell wall extension, starch turnover and the levels of a few essential nutrients.  相似文献   

10.
11.
12.
The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time-consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection-independent method for the microscopic examination of protein S-palmitoylation, an important post-translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single-molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of P. falciparum and the host erythrocytes over time are observed.  相似文献   

13.
A conditional negative selection marker is essential for high throughput insertional mutagenesis with any two-element transposon tagging system. Thetms2 gene encodes indoleacetic acid hydrolase (IAAH) which converts naphthaleneacetamide (NAM) to the potent auxin naphthaleneacetic acid, a phytotoxic derivative. This gene, under the control of the manopine synthase gene 2 promoter fromAgrobacterium tumefaciens and exogenously applied NAM, have been used effectively as a negative selector inAc/Ds insertional mutagenesis ofArabidopsis thaliana (Sundaresan et al., 1995). In this study we show thattms2 can also be used as a negative selector in rice. T1 transgenic seedlings expressing thistms2 gene under the control of themas2’ promoter showed significant reduction in shoot and root growth in the presence of 5–10 μM NAM under specified growth conditions compared to plants not containing this gene.  相似文献   

14.
Summary Excised roots of wild-type and nitrate-reductase deficient mutant Arabidopsis thaliana (L.) Heynh. can be propagated as sustained root cultures in liquid medium. Culture initiation from a single seedling required a two-day indoleacetic acid treatment at 0.05 mg/l concentration. Indoleacetic acid facilitated subculture but was not essential for sustained growth. This procedure has allowed the clonal propagation of roots derived from individual wildtype and mutant seedlings for more than 21 months. The cultured roots retained their shoot regeneration ability; however, a controlled desiccation treatment was required to restore it to the level of freshly excised roots. The chromosome number remained diploid and no evidence for the accumulation of recessive mutations was observed. The cultured roots are competent for Agrobacterium-mediated transformation. The sustained root culture technology allowed the maintenance of transgenic tissues in which expression of a dominant, seed-lethal gene (seed-specific pea vicilin promoter fused to diphtheria toxin A chain gene) precluded generative propagation.On leave from State of South Carolina Governor's School for Science and Mathematics, Hartsville, SC 29550  相似文献   

15.
Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood‐stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site‐specific recombination in P. falciparum, capable of excising loxP‐flanked sequences from a genomic locus with close to 100% efficiency within the time‐span of a single erythrocytic growth cycle. DiCre‐mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre‐expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood‐stage parasite genes.  相似文献   

16.
Palmitoylation is the post‐translational reversible addition of the acyl moiety, palmitate, to cysteine residues of proteins and is involved in regulating protein trafficking, localization, stability and function. The Aspartate‐Histidine‐Histidine‐Cysteine (DHHC) protein family, named for their highly conserved DHHC signature motif, is thought to be responsible for catalysing protein palmitoylation. Palmitoylation is widespread in all eukaryotes, including the malaria parasite, Plasmodium falciparum, where over 400 palmitoylated proteins are present in the asexual intraerythrocytic schizont stage parasites, including proteins involved in key aspects of parasite maturation and development. The P. falciparum genome includes 12 proteins containing the conserved DHHC motif. In this study, we adapted a palmitoyl‐transferase activity assay for use with P. falciparum proteins and demonstrated for the first time that P. falciparum DHHC proteins are responsible for the palmitoylation of P. falciparum substrates. This assay also reveals that multiple DHHCs are capable of palmitoylating the same substrate, indicating functional redundancy at least in vitro. To test whether functional redundancy also exists in vivo, we investigated the endogenous localization and essentiality of a subset of schizont‐expressed PfDHHC proteins. Individual PfDHHC proteins localized to distinct organelles, including parasite‐specific organelles such as the rhoptries and inner membrane complex. Knock‐out studies identified individual DHHCs that may be essential for blood‐stage growth and others that were functionally redundant in the blood stages but may have functions in other stages of parasite development. Supporting this hypothesis, disruption of PfDHHC9 had no effect on blood‐stage growth but reduced the formation of gametocytes, suggesting that this protein could be exploited as a transmission‐blocking target. The localization and stage‐specific expression of the DHHC proteins may be important for regulating their substrate specificity and thus may provide a path for inhibitor development.  相似文献   

17.
Rhodamine 123 (Rh 123) has been used to probe the functional status of the mitochondrion present within the asexual, intraerythrocytic stages of the malarial parasite Plasmodium falciparum. This cationic fluorescent dye accumulates specifically in negatively charged cellular compartments, such as mitochondria. Using epifluorescence microscopy the development of what appears to be a single mitochondrion has been followed through the intraerythrocytic cycle. Mitochondrial development progresses from a fine thread-like organelle that becomes longer and eventually branched. Each daughter merozoite receives a branch or piece of the parent organelle. Cytoplasmic Rh 123 accumulation was also observed, indicating that there exists a transmembrane potential across the outer plasma and parasitophorous vacuolar membranes of the parasite. The effects of uncouplers (protonophores), ionophores, and inhibitors were examined by monitoring Rh 123 accumulation and retention. Our results demonstrate that the mitochondrion of P. falciparum actively maintains a high transmembrane potential, the function of which is as yet undefined.  相似文献   

18.
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号