首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effects of proteolytic enzymes on ionic conductances of squid axon membranes have been studied by means of the voltage clamp technique. When perfused internally alpha-chymotrypsin (1 mg/ml) increased and prolonged the depolarizing after-potential. Sodium inactivation was partially inhibited causing a prolonged sodium current, and peak sodium and steady-state potassium currents were suppressed. The time for sodium current to reach its peak was not affected. Leakage conductance increased later. On the other hand, carboxypeptidases A and B, both at 1mg/ml, suppressed the sodium and potassium conductance increases with little or no change in sodium inactivation. The mechanism that controls sodium inactivation appears to be associated with the structure of membrane proteins which is modified by alpha-chymotrypsin but not by carboxypeptidases and is located in a position accessible to alpha-chymotrypsin only from inside the membrane.  相似文献   

4.
Reversible electrical breakdown of squid giant axon membrane   总被引:3,自引:0,他引:3  
Charge pulse relaxation experiments were performed on squid giant axon. In the low voltage range, the initial voltage across squid axon membrane was a linear function of the injected charge. For voltages of the order of 1 V this relationship between injected charge and voltage across the membrane changes abruptly. Because of a high conductance state caused by these large electric fields the voltage across the membrane cannot be made large enough to exceed a critical value, Vc, defined as the breakdown voltage, Vc has for squid axon membrane a value of 1.1 V at 12 degrees C. During breakdown the specific membrane conductance exceeds 1 S. cm-2. Electrical breakdown produced by charge pulses of few microseconds duration have no influence on the excitability of the squid axon membrane. The resealing process of the membrane is so fast that a depolarizing breakdown is followed by the falling phase of a normal action potential. Thus, membrane voltages close to Vc open the sodium channels in few microseconds, but do not produce a decrease of the time constant of potassium activation large enough to cause the opening of a significant percentage of channels in a time of about 10 mus. It is probable that the reversible electrical breakdown is mainly caused by mechanical instability produced by electrostriction of the membrane (electrochemical model), but the decrease in the Born energy for ion injection into the membrane, accompanying the decrease in membrane thickness, may play also an important role. Because of the high conductance of the membrane during breakdown it seems very likely that this results in pore formation.  相似文献   

5.
Deoxycholate can react with sodium channels with a high potency. The apparent dissociation constant for the saturable binding reaction is 2 microM at 8 degrees C, and the heat of reaction is approximately -7 kcal/mol. Four independent test with Na-free media, K-free media, tetrodotoxin, and pancuronium unequivocally indicate that it is the sodium channel that is affected by deoxycholate. Upon depolarization of the membrane, the drug modified channel exhibits a slowly activating and noninactivating sodium conductance. The kinetic pattern of the modified channel was studied by increasing deoxycholate concentration, lowering the temperature, chemical elimination of sodium inactivation, or conditioning depolarization. The slow activation of the modified channel can be represented by a single exponential function with the time constant of 1--5 ms. The modified channel is inactivated only partially with a time constant of 1 S. The reversal potential is unchanged by the drug. Observations in tail currents and the voltage dependence of activation suggest that the activation gate is actually unaffected. The apparently slow activation may reflect an interaction betweem deoxycholate and the sodium channel in resting state.  相似文献   

6.
7.
The effects of aminopyridines on ionic conductances of the squid giant axon membrane were examined using voltage clamp and internal perfusion techniques. 4-Aminopyridine (4-AP) reduced potassium currents, but had no effect upon transient sodium currents. The block of potassium channels by 4-AP was substantially less with (a) strong depolarization to positive membrane potentials, (b) increasing the duration of a given depolarizing step, and (c) increasing the frequency of step depolarizations. Experiments with high external potassium concentrations revealed that the effect of 4-AP was independent of the direction of potassium ion movement. Both 3- and 2-aminopyridine were indistinguishable from 4-AP except in potency. It is concluded that aminopyrimidines may be used as tools to block the potassium conductance in excitable membranes, but only within certain specific voltage and frequency limits.  相似文献   

8.
Voltage-dependent K+ channels are responsible for repolarization of the cell membrane during the late phase of the action potential. Here we report the purification of proteins from squid axon membranes which bind the K+-channel blocker noxiustoxin (NTX), and their subsequent functional reconstitution in planar bilayers. The NXT-affinity purified proteins had Mr values of 60000 ± 6000, 160000 ± 15000 and 220000 ± 20000. Their incorporation into bilayers resulted in single-channel currents with three conductances, the most frequent one of 11 pS in 300/100 mM KCl (cis/trans). The voltage dependence, reversal potential and bursting behavior suggest that these are the K+ channels involved in the squid axon action potential.  相似文献   

9.
Effects of barium on the potassium conductance of squid axon   总被引:25,自引:20,他引:5       下载免费PDF全文
Ba++ ion blocks K+ conductance at concentrations in the nanomolar range. This blockage is time and voltage dependent. From the time dependence it is possible to determine the forward and reverse rate constants for what appears to be an essentially first-order process of Ba++ interaction. The voltage dependence of the rate constants and the dissociation constants place the site of interaction near the middle of the membrane field. Comparison of the efficacy of Ba++ block at various internal K+ concentrations suggests that Ba++ is probably a simple competitive inhibitor of K+ interaction with the K+ conductance. The character of Ba++ block in high external K+ solutions suggests that Ba++ ion may be "knocked-off" the site by inward movement of external K+. Examination of the effects of other divalent cations suggests that the channel may have a closed state with a divalent cation inside the channel. The relative blockage at different temperatures implies a strong interaction between Ba++ and the K+ conductance.  相似文献   

10.
—Levorphanol (10-3 M) reversibly blocked conduction in the giant axon of the squid and axons from the walking legs of spider crab and lobster. Similar concentrations of levallorphan and dextrorphan blocked conduction in the squid giant axon. Under the same experimental condition morphine caused an approximately 40 per cent decrease in spike height. Levorphanol did not affect the resting potential or resistance of the squid axon. Spermidine, spermine and dinitrophenol had little or no direct effect on the action potential nor did they alter the potency of levorphanol. Concentrations of levorphanol as low as 5 × 10-5 M blocked repetitive or spontaneous activity in the squid axon induced by decreasing the divalent cations in the medium. After exposure to tritiated levorphanol, the axoplasm and envelope of the squid axon accumulated up to 500 per cent of the concentration of tritium found in the external medium, dependent on time of exposure, and other variables. At pH 6 the levels of penetration were 33-50% of those found at pH 8, which correlates with our observation that levorphanol is about 33 % as potent in blocking the action potential at pH 6. The penetrability of levorphanol was not affected by spermidine, dinitrophenol or cottonmouth moccasin venom. Levorphanol did not alter the penetration of [C14]acetylcholine nor did it render the squid axon sensitive to it. The block of axonal conduction by compounds of the morphine series is discussed both as to possible mechanisms and significance.  相似文献   

11.
The ionic mechanism of action of a spin-labeled local anesthetic (SLA), 2-[N-methyl-N-(2,2,6,6-tetramethylpiperidonooxyl)]-ethyl 4-ethoxylbenzoate, was studied by means of voltage clamp technique with squid giant axons in comparison with the parent compound without spin label moiety, 2-(N,N-dimethyl)ethyl 4-ethoxylbenzoate (GS-01). Like other local anesthetics, they suppressed both sodium and potassium conductance increases. However, three remarkable differences have been noted between SLA and GS-01: (1) SLA is more effective than GS-01 in suppressing the sodium and potassium conductance increases; (2) SLA induces a potassium inactivation, whereas GS-01 is lacking this ability; (3) SLA has no effect on the time to peak sodium current, whereas GS-01 prolongs it. GS-01 resembles procaine with respect to (2) and (3) above. SLA will become a useful probe for the study of the molecular mechanism of local anesthetic aciton and of ionic channel function.  相似文献   

12.
To determine how the permeant cations interact with the sodium channel, the instantaneous current-voltage (I-V) relationship, conductance-ion concentration relationship, and cation selectivity of sodium channels were studied with internally perfused, voltage clamped squid giant axons in the presence of different permeant cations in the external solution. In Na-containing media, the instantaneous I-V curve was almost linear between +60 and -20 mV, but deviated from the linearity in the direction to decrease the current at more negative potentials. The linearity of instantaneous I-V curve extended to more negative potentials with lowering the external Ca concentration. The I-V curve in Li solution was almost the same as that in Na solution. The linearity of the I-V curve improved in NH4 solution exhibiting only saturation at -100 mV with no sign of further decrease in current at more negative potentials. Guanidine and formamidine further linearized the instantaneous I-V curve. The conductance of the sodium channels as measured from the tail current saturated at high concentrations of permeant cations. The apparent dissociation constants determined from the conductance-ion concentration curve at -60 mV were as follows: Na, 378 mM; Li, 247 mM; NH4, 174 mM; guanidine, 111 mM; formamidine, 103 mM. The ratio of the test cation permeability to the sodium permeability as measured from the reversal potentials of tail currents varied with the test cation concentration and/or the membrane potential. These observations are incompatible with the independence principle, and can be explained on the basis of the Eyring's rate theory. It is suggested that the slope of the instantaneous I-V curve is determined by the relative affinity of permeant cations and blocking ions (Ca) for the binding site in the sodium channel. The ionic selectivity of the channel depends on the energy barrier profile of the channel.  相似文献   

13.
The interaction of pancuronium with sodium channels was investigated in squid axons. Sodium current turns on normally but turns off more quickly than the control with pancuronium 0.1-1mM present internally; The sodium tail current associated with repolarization exhibits an initial hook and then decays more slowly than the control. Pancuronium induces inactivation after the sodium inactivation has been removed by internal perfusion of pronase. Such pancuronium-induced sodium inactivation follows a single exponential time course, suggesting first order kinetics which represents the interaction of the pancuronium molecule with the open sodium channel. The rate constant of association k with the binding site is independent of the membrane potential ranging from 0 to 80 mV, but increases with increasing internal concentration of pancuronium. However, the rate constant of dissociation l is independent of internal concentration of pancuronium but decreases with increasing the membrane potential. The voltage dependence of l is not affected by changine external sodium concentration, suggesting a current-independent conductance block, The steady-state block depends on the membrane potential, being more pronounced with increasing depolarization, and is accounted for in terms of the voltage dependence of l. A kinetic model, based on the experimental observations and the assumption on binding kinetics of pancuronium with the open sodium channel, successfully simulates many features of sodium current in the presence of pancuronium.  相似文献   

14.
15.
Summary The effects of spin-labeled local anesthetics on sodium currents of internally perfused squid axons were studied using the voltage-clamp technique. Internal application (10 m) of the most potent spin-labeled local anesthetic used in this study produced a small initial block of sodium currents. However, after sixty repetitive pulses (to +80 mV) given at 1 Hz, the sodium currents were drastically reduced. In addition to this frequency-dependent phenomenon, the anesthetic effect on the sodium currents was also sensitive to the voltage of the pulses. Both the frequency- and voltage-dependent properties remained intact after removal of sodium inactivation with pronase. The recovery of sodium currents from this frequency-dependent anesthetic effect followed a single exponential curve with a surprisingly long time constant of about 10 min. Such a long recovery time, which is longer than any known sodium inactivation process, led us to suggest that the recovery process represents the dissociation of drug molecules from their binding sites. We have also found that increasing hydrophobic character of the homologues series of spin-labeled local anesthetics enhances the frequency- and voltage-dependent block of sodium currents. This effect strongly suggests that hydrophobic interaction is an integral component of the binding site. These probes with their selective effects on the sodium currents, are expected to be highly useful in studying the molecular structure of the sodium channels.  相似文献   

16.
The effects of spin-labeled local anesthetics on sodium currents of internally perfused squid axons were studied using the voltage-clamp technique. Internal application (10 mum) of the most potent spin-labeled local anesthetic used in this study produced a small initial block of sodium currents. However, after sixty repetitive pulses (to + 80 mV) given at 1 Hz, the sodium currents were drastically reduced. In addition to this frequency-dependent phenomenon, the anesthetic effect on the sodium currents was also sensitive to the voltage of the pulses. Both the frequency- and voltage-dependent properties remained intact after removal of sodium inactivation with pronase. The recovery of sodium currents from this frequency-dependent anesthetic effect followed a single exponential curve with a surprisingly long time constant of about 10 min. Such a long recovery time, which is longer than any known sodium inactivation process, led us to suggest that the recovery process represents the dissociation of drug molecules from their binding sites. We have also found that increasing hydrophobic character of the homologues series of spin-labeled local anesthetics enhances the frequency- and voltage-dependent block of sodium currents. This effect strongly suggests that hydrophobic interaction is an integral component of the binding site. These probes with their selective effects on the sodium currents, are expected to be highly useful in studying the molecular structure of the sodium channels.  相似文献   

17.
Summary Permeabilities of squid axon membranes to various cations at rest and during activity have been measured by voltage clamp before and during internal perfusion of 4×10–5 m grayanotoxin I. The resting sodium and potassium permeabilities were estimated to be 6.85×10–8 cm/sec and 2.84×10–6 cm/sec, respectively. Grayanotoxin I increased the resting sodium permeability to 7.38×10–7 cm/sec representing an 11-fold increase. The potassium permeability was increased only by a factor of 1.24. The resting permeability ratios as estimated by the voltage clamp method before application of grayanotoxin I were Na (1): Li (0.83): formamidine (1.34): guanidine (1.49): Cs (0.87): methylguanidine (0.86): methylamine (0.78). Grayanotoxin I did not drastically change the resting permeability ratios with a result of Na (1): Li (0.95): formamidine (1.27): guanidine (1.16): Cs (0.47): methylguanidine (0.72): methylamine (0.46). The membrane potential method gave essentially the same resting permeability ratios before and during application of grayanotoxin I if corrections were made for permeability to choline as the cation substitute and for changes in potassium permeability caused by test cations. The permeability ratio choline/Na was estimated to be 0.72 by the voltage clamp method and 0.65 by the membrane potential method. Grayanotoxin I decreased the ratio to 0.43. The permeability ratios during peak transient current were estimated to be Na (1): Li (1.12): formamidine (0.20): guanidine (0.20): Cs (0.085): methylguanidine (0.061): methylamine (0.036). Thus the sodium channels for the peak current are much more selective to cations than the resting sodium channels. It appears that the resting sodium channels in normal and grayanotoxin I-treated axons are operationally different from the sodium channels that undergo a conductance increase upon stimulation.  相似文献   

18.
Passive electrical characteristics of perfused squid axon membrane are investigated. In a previous publication, we reported that the capacitance of intact squid axon membrane is partly frequency dependent. We extended the same measurement to perfused axons. We found that the electrical characteristics of perfused axon membrane are essentially the same as those of intact axons. In this work, we investigated the effects of phospholipase A and pronase on the membrane capacitance. Phospholipase A is known to block the sodium activation and pronase to eliminate the sodium inactivation. Phospholipase A is found to increase the frequency dependent as well as the frequency independent capacitances. Our tentative conclusion is that this enzyme perturbs the lipid structure and decreases its thickness. Pronase is found to increase the frequency dependent capacitance slightly while the capacitance of the lipid layer remains unaltered. Although voltage clamp data indicate that the pronase disrupts the excitatory mechanism extensively, this enzyme has relatively little effect on the overall membrane capacitance.  相似文献   

19.
Summary The effects of fatty acids on the ionic currents of the voltage-clamped squid giant axon were investigated using intracellular and extracellular application of the test substances. Fatty acids mainly suppress the Na current but have little effect on the K current. These effects are completely reversed after washing with control solution. The concentrations required to suppress the peak inward current by 50% and Hill number were determined for each fatty acid. ED50 decreased about 1/3 for each increase of one carbon atom. The standard free energy was –3.05 kJ mole–1 for CH2. The Hill number was 1.58 for 2-decenoic acid. The suppression effect of the fatty acids depends on the number of carbon atoms in the compounds and their chemical structure. Suppression of the Na current was clearly observed when the number of carbon atoms exceeded eight. When fatty acids of the same chain length were compared, 2-decenoic acid had strong inhibitory activity, but sebacic acid had no effect at all on the Na channel. The currents were fitted to equations similar to those proposed by Hodgkin and Huxley (J. Physiol. (London) 117:500–544, 1952) and the changes in the parameters of these equations in the presence of fatty acids were calculated. The curve of the steady-state activation parameter (m ) for the Na current against membrane potential and the time constant of activation ({ie113-1}) were shifted 20 mV in a depolarizing direction by the application of fatty acids. The time constant for inactivation ({ie113-2}) was almost no change by application of the fatty acids. The time constant for activation ({ie113-3}) of K current was shifted 20 mV in a depolarizing direction by the application of the fatty acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号