共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulieman Ibraheem Shelash Al-Hawary Malika Ruzibakieva Reena Gupta Jitendra Malviya Mariam Alaa Toama Ahmed Hjazi Murtadha Raad Radhi Alkhayyat Hashem O. Alsaab Ali Hadi Enas R. Alwaily 《Cell biochemistry and function》2024,42(1):e3904
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article. 相似文献
2.
Longquan Zuo Yueqin Zhu Lili Hu Yanyi Liu Yinghong Wang Yamin Hu Huan Wang Xuesheng Pan Kuayue Li Na Du Yan Huang 《Journal of cellular and molecular medicine》2019,23(6):3940-3950
Acid‐sensing ion channel 1a (ASIC1a) allows Na+ and Ca2+ flow into cells. It is expressed during inflammation, in tumour and ischaemic tissue, in the central nervous system and non‐neuronal injury environments. Endoplasmic reticulum stress (ERS) is caused by the accumulation of misfolded proteins that interferes with intracellular calcium homoeostasis. Our recent reports showed ASIC1a and ERS are involved in liver fibrosis progression, particularly in hepatic stellate cell (HSC) activation. In this study, we investigated the roles of ASIC1a and ERS in activated HSC. We found that ASIC1a and ERS‐related proteins were up‐regulated in carbon tetrachloride (CCl4)‐induced fibrotic mouse liver tissues, and in patient liver tissues with hepatocellular carcinoma with severe liver fibrosis. The results show silencing ASIC1a reduced the expression of ERS‐related biomarkers GRP78, Caspase12 and IREI‐XBP1. And, ERS inhibition by 4‐PBA down‐regulated the high expression of ASIC1a induced by PDGF, suggesting an interactive relationship. In PDGF‐induced HSCs, ASIC1a was activated and migrated to the cell membrane, leading to extracellular calcium influx and ERS, which was mediated by PI3K/AKT pathway. Our work shows PDGF‐activated ASIC1a via the PI3K/AKT pathway, induced ERS and promoted liver fibrosis progression. 相似文献
3.
Su Zhou Wei Yan Wei Shen Jing Cheng Yueyue Xi Suzhen Yuan Fangfang Fu Ting Ding Aiyue Luo Shixuan Wang 《Journal of cellular and molecular medicine》2018,22(1):486-496
The primordial follicle assembly, activation and the subsequent development are critical processes for female reproduction. A limited number of primordial follicles are activated to enter the growing follicle pool each wave, and the primordial follicle pool progressively diminishes over a woman's life‐time. The number of remaining primordial follicles represents the ovarian reserve. Identification and functional investigation of the factors involved in follicular initial recruitment will be of great significance to the understanding of the female reproduction process and ovarian ageing. In this study, we aimed to study whether and how semaphorin 6C (Sema6c) regulated the primordial follicle activation in the neonatal mouse ovary. The attenuation of SEMA6C expression by SiRNA accelerated the primordial follicle activation in the in vitro ovary culture system. PI3K‐AKT‐rpS6 pathway was activated when SEMA6C expression was down‐regulated. And the LY294002 could reverse the effect of low SEMA6C expression on primordial follicle activation. Our findings revealed that Sema6c was involved in the activation of primordial follicles, and the down‐regulation of SEMA6C led to massive primordial follicle activation by interacting with the PI3K‐AKT‐rpS6 pathway, which might also provide valuable information for understanding premature ovarian failure and ovarian ageing. 相似文献
4.
A.A. Peyvandi H.‐A. Abbaszadeh N. Ahmady Roozbahany A. Pourbakht S. Khoshsirat H. Haddadzade Niri H. Peyvandi S. Niknazar 《Cell proliferation》2018,51(2)
Objective
Over 5% of the world's population suffers from disabling hearing loss. Stem cell homing in target tissue is an important aspect of cell‐based therapy, which its augmentation increases cell therapy efficiency. Deferoxamine (DFO) can induce the Akt activation, and phosphorylation status of AKT (p‐AKT) upregulates CXC chemokine receptor‐4 (CXCR4) expression. We examined whether DFO can enhance mesenchymal stem cells (MSCs) homing in noise‐induced damaged cochlea by PI3K/AKT dependent mechanism.Materials and Methods
Mesenchymal stem cells were treated with DFO. AKT, p‐AKT protein and hypoxia inducible factor 1‐ α (HIF‐1α) and CXCR4 gene and protein expression was evaluated by RT‐ PCR and Western blot analysis. For in vivo assay, rats were assigned to control, sham, noise exposure groups without any treatment or receiving normal, DFO‐treated and DFO +LY294002 (The PI3K inhibitor)‐treated MSCs. Following chronic exposure to 115 dB white noise, MSCs were injected into the rat cochlea through the round window. Number of Hoechst‐ labelled cells was determined in the endolymph after 24 hours.Results
Deferoxamine increased P‐AKT, HIF‐1α and CXCR4 expression in MSCs compared to non‐treated cells. DFO pre‐conditioning significantly increased the homing ability of MSCs into injured ear compared to normal MSCs. These effects of DFO were blocked by LY294002.Conclusions
Pre‐conditioning of MSCs by DFO before transplantation can improve stem cell homing in the damaged cochlea through PI3K/AKT pathway activation.5.
Kangjia Du Wantong Ma Chengjie Yang Zhongkun Zhou Shujian Hu Yanan Tian Hao Zhang Yunhao Ma Xinrong Jiang Hongmei Zhu Huanxiang Liu Peng Chen Yingqian Liu 《Journal of enzyme inhibition and medicinal chemistry》2022,37(1):1212
A series of novel derivatives of isaindigotone, which comes from the root of isaits indinatca Fort, were synthesised (Compound 1–26). Four human gastrointestinal cancer cells (HCT116, PANC-1, SMMC-7721, and AGS) were employed to evaluate the anti-proliferative activity. Among them, Compound 6 displayed the most effective inhibitory activity on AGS cells with an IC50 (50% inhibitory concentration) value of 2.2 μM. The potential mechanism study suggested that Compound 6 induced apoptosis in AGS cells. The collapse of mitochondrial membrane potential (MMP) in AGS cells was proved. In docking analysis, good affinity interaction between Compound 6 and AKT1 was discovered. Treatment of AGS cells with Compound 6 also resulted in significant suppression of PI3K/AKT/mTOR signal pathway. The collapse of MMP and suppression of PI3K/AKT/mTOR signal pathway may be responsible for induction of apoptosis. This derivative Compound 6 could be useful as an underlying anti-tumour agent for treatment of gastric cancer. 相似文献
6.
7.
Tao Zhang Xinying Zhu Haichong Wu Kangfeng Jiang Gan Zhao Aftab Shaukat Ganzhen Deng Changwei Qiu 《Journal of cellular and molecular medicine》2019,23(5):3711-3723
It is well established that cancer cells depend upon aerobic glycolysis to provide the energy they need to survive and proliferate. However, anti‐glycolytic agents have yielded few positive results in human patients, in part due to dose‐limiting side effects. Here, we discovered the unexpected anti‐cancer efficacy of Polydatin (PD) combined with 2‐deoxy‐D‐glucose (2‐DG), which is a compound that inhibits glycolysis. We demonstrated in two breast cell lines (MCF‐7 and 4T1) that combination treatment with PD and 2‐DG induced cell apoptosis and inhibited cell proliferation, migration and invasion. Furthermore, we determined the mechanism of PD in synergy with 2‐DG, which decreased the intracellular reactive oxygen (ROS) levels and suppressed the PI3K/AKT pathway. In addition, the combined treatment inhibited the glycolytic phenotype through reducing the expression of HK2. HK2 deletion in breast cancer cells thus improved the anti‐cancer activity of 2‐DG. The combination treatment also resulted in significant tumour regression in the absence of significant morphologic changes in the heart, liver or kidney in vivo. In summary, our study demonstrates that PD synergised with 2‐DG to enhance its anti‐cancer efficacy by inhibiting the ROS/PI3K/AKT/HIF‐1α/HK2 signalling axis, providing a potential anti‐cancer strategy. 相似文献
8.
Han Wang Dan Wu Liangliang Cai Xiaohong Li Zhiming Zhang Shuai Chen 《Journal of cellular and molecular medicine》2020,24(12):6869-6882
WD‐repeat proteins are implicated in a variety of biological functions, most recently in oncogenesis. However, the underlying function of WD‐repeat protein 41 (WDR41) in tumorigenesis remains elusive. The present study was aimed to explore the role of WDR41 in breast cancer. Combined with Western blotting and immunohistochemistry, the results showed that WDR41 was expressed at low levels in breast cancer, especially in triple‐negative breast cancer (TNBC). Using methylation‐specific PCR (MSP), we observed that WDR41 presented hypermethylation in MDA‐MB‐231 cells. Methylation inhibitor 5‐aza‐2′‐deoxycytidine (5‐aza‐dC) management increased the expression of WDR41 in MDA‐MB‐231 cells, but not in MCF‐10A (normal mammary epithelial cells) or oestrogen receptor‐positive MCF‐7 breast cancer cells. WDR41‐down‐regulation promoted, while WDR41‐up‐regulation inhibited the tumour characteristics of TNBC cells including cell viability, cell cycle and migration. Further, WDR41‐up‐regulation dramatically suppressed tumour growth in vivo. Mechanistically, WDR41 protein ablation activated, while WDR41‐up‐regulation repressed the AKT/GSK‐3β pathway and the subsequent nuclear activation of β‐catenin in MDA‐MB‐231 cells, and 5‐aza‐dC treatment enhanced this effect. After treatment with the AKT inhibitor MK‐2206, WDR41‐down‐regulation‐mediated activation of the GSK‐3β/β‐catenin signalling was robustly abolished. Collectively, methylated WDR41 in MDA‐MB‐231 cells promotes tumorigenesis through positively regulating the AKT/GSK‐3β/β‐catenin pathway, thus providing an important foundation for treating TNBC. 相似文献
9.
10.
11.
PI3K is a downstream target of multiple cell-surface receptors, which acts as a crucial modulator of both cell polarization and survival. PI3K/AKT signaling pathway is commonly involved in cancer, atherosclerosis, and other diseases. However, its role in cardiovascular diseases, especially in atherosclerosis, remains to be further investigated. To determine the effect of PI3K/AKT signaling pathway on cellular inflammatory response and oxidative stress, PI3K inhibitor (GDC0941) and AKT inhibitor (MK2206) were used. First, THP-1 cells were incubated with ox-LDL (100 µg/ml) to establish an in vitro atherosclerosis model. The inflammatory factors and foam cell formation were then evaluated to ascertain and compare the effects of PI3K and AKT inhibition. ApoE−/− mice fed a high-fat diet were used to assess the roles of PI3K and AKT in aortic plaque formation. Our results showed that the inhibition of PI3K or AKT could suppress the activation of NLRP3, decreased the expression levels of p-p65/p65 and reduced the production of mitochondrial reaction oxygen species (mitoROS) in THP-1 cells. Inhibition of PI3K or AKT could also reduced atherosclerosis lesion and plaque area, and decreased the levels of NLRP3 and IL-1β in ApoE−/− mice. The effect of PI3K inhibition was more significant than AKT. Therefore, PI3K inhibition can retard the progress of atherosclerosis. Besides, there may be other AKT-independent pathways that regulate the formation of atherosclerosis. 相似文献
12.
13.
Jianhui Zhao Chao Zhang Zhongli Gao Han Wu Rui Gu Rui Jiang 《Journal of cellular biochemistry》2018,119(8):6461-6469
14.
15.
16.
Protein abundance of AKT and ERK pathway components governs cell type‐specific regulation of proliferation
下载免费PDF全文

Sajib Chakraborty Jie Bao Susen Lattermann Melanie Boerries Hauke Busch Patrick Wuchter Anthony D Ho Jens Timmer Marcel Schilling Thomas Höfer Ursula Klingmüller 《Molecular systems biology》2017,13(1)
Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro‐proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type‐specific proliferation. First, cell type‐specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate‐limiting for faster cycling cells while slower cell cycles are controlled at the G1‐S progression. The integrated mathematical model of Epo‐driven proliferation explains cell type‐specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti‐proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance. 相似文献
17.
Li Wang Changyuan Wang Yongming Jia Zhihao Liu Xiaohong Shu Kexin Liu 《Journal of cellular biochemistry》2016,117(5):1233-1239
18.
Jinwei Lu Chenyi Ye Yanyong Huang Donghui Huang Lan Tang Weiduo Hou Zhihui Kuang Yazhou Chen Shining Xiao Mumingjiang Yishake Rongxin He 《Journal of cellular and molecular medicine》2020,24(18):10444-10457
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis. 相似文献
19.
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells. 相似文献
20.
Yanan Zhang Hanbing Yan Yan Jiang Tao Chen Zhijin Ma Fei Li Min Lin Yanzhi Xu Xuemei Zhang Jianming Zhang Hui He 《Experimental biology and medicine (Maywood, N.J.)》2021,246(4):371
Long non-coding RNAs are a kind of endogenous ncRNAs with a length of more than 200 bp. Accumulating evidence suggests that long non-coding RNAs function as pivotal regulators in tumorigenesis and progression. However, their biological roles in breast cancer remain largely unknown. Here, we found that IGF2 antisense RNA (IGF2-AS) was significantly decreased in breast cancer tissues, cell lines, and plasma. Patients with low IGF2-AS were more likely to develop larger tumor size and later clinical stage. Overexpression of IGF2-AS evidently inhibited the proliferation and induced apoptosis of MCF-7 and T47D cells in vitro, as well as retarded tumor growth in vivo. Further investigation revealed that IGF2-AS inhibited the expression of its sense-cognate gene IGF2 in an epigenetic DNMT1-dependent manner, resulting in the inactivation of downstream oncogenic PI3K/AKT/mTOR signaling pathway. Enforced expression of IGF2 could significantly block the tumor inhibitory effect of IGF2-AS. Importantly, we found that IGF2-AS could be used as an effective biomarker for breast cancer diagnosis and prognosis. Taken together, our study indicates that IGF2-AS is a tumor suppressor in breast cancer, restoration of IGF2-AS may be a promising treatment for this fatal disease. 相似文献