首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37°C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

2.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37 degrees C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

3.
Although microsomes prepared from rat kidney cortex contained significant concentrations of both NADH cytochrome b5 reductase and cytochrome b5, they did not catalyze cytochrome b5-dependent Δ9 oxidative lipid desaturation. However, incubation of kidney microsomes in the presence of control liver microsomes resulted in a two-fold increase in fatty acid desaturase activity over that seen with liver microsomes alone. Addition of kidney microsomes to liver microsomes prepared from animals maintained on a fat free diet resulted in an increased desaturase activity which was twice that seen with the control liver preparation. Kidney microsomes alone did not catalyze the cytochrome P-450-dependent N-demethylation of aminopyrine, and in contrast to the desaturate, no increase in demethylase activity was observed when kidney microsomes were added to liver microsomes.  相似文献   

4.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in brain microsomes was modified in vitro. The inactivation of the enzyme required Mg2+ and ATP or ADP, and an inactivator present both in S105 and microsomes. Inactivation was dependent on inactivator concentration and time of preincubation. The inactive reductase in brain microsomes could be completely reactivated by a factor present in brain S105. Reactivation of the enzyme also depended on incubation time and the activator concentration. Activator activity was inhibited by NaF, a phosphatase inhibitor. Both the inactivator and the activator appear to be proteins. Our data thus suggest that the inactivation and the reactivation of the reductase in brain microsomes occurs via protein-mediated interconversion to phosphorylated and dephosphorylated forms of the enzyme with differing catalytic activity. The HMG-CoA reductase activity increases almost two-fold during isolation of the brain microsomes. This increase in activity is blocked when brain tissue is homogenized in the medium containing NaF. In rat brain about 50% of the reductase exists in an inactive form in both young and adult rats. The low reductase activity in brain of adult animals does not appear to be related to an increase in the proportion of an inactive phosphorylated form of the enzyme. This suggests that developmental change in the reductase activity is not associated with the change in the proportion of phosphorylated and dephosphorylated forms of the enzyme.  相似文献   

5.
Both the cytochrome b5 level and NADH cytochrome b5 reductase activity in rat liver microsomes were increased 2-fold by repeated i.p. administration of 1.5 mmol/kg propylthiouracil (PTU) for 2 weeks, but neither the cytochrome P-450 level nor NADPH cytochrome P-450 reductase activity were affected by the treatment. Liver microsomes from PTU-treated rats showed a significant decrease in aminopyrine N-demethylation, but not in benzphetamine N-demethylation, aniline hydroxylation or 7-ethoxycoumarin O-deethylation. A single administration of the compound had no effect on any components of the system. In vitro, drug hydroxylation activities were not affected by PTU up to 1.0 mM. From the above evidence, repeated administration of PTU selectively induced cytochrome b5 and NADH cytochrome b5 reductase in rat liver microsomes.  相似文献   

6.
Electron transport from untreated to mersalyzed microsomal vesicles at the level of NADH-cytochrome b5 reductase or cytochrome b5 has been demonstrated in the absence of added water-soluble electron carriers. A similar effect was shown in the systems “intact mitochondria — mersalyzed microsomes” and “mersalyzed mitochondria— untreated microsomes”. No measurable electron transport between intact and mersalyzed particles of inner mitochondrial membrane was found. The obtained data suggest that the capability to carry out intermembrane electron transfer is specific for NADH-cytochrome b5 reductase and/or cytochrome b5, localized in microsomal and outer mitochondrial membranes.  相似文献   

7.
The C21 side-chain cleavage enzymes from porcine adrenal and testicular microsomes have been purified and shown to resemble each other very closely (Nakajin, S., Shinoda, M., Hanui, M., Shively, J.E., and Hall, P.F. (1984) J. Biol. Chem. 259, 3971-3976). We have investigated the reason for the low levels of lyase activity shown by adrenal microsomes as compared to testicular microsomes. Competition for substrate with 21-hydroxylase in adrenal microsomes was excluded by studies showing that antibodies to 21-hydroxylase do not increase lyase activity in spite of almost complete inhibition of 21-hydroxylation. Reconstitution of the purified testicular enzyme in lipids extracted from adrenal and testicular microsomes excluded a specific effect of lipids on lyase activity. On the other hand, addition of porcine hepatic P-450 reductase to microsomes from adrenal and testis increased the activity of lyase relative to hydroxylase. The same effect is seen when reductase is added to the pure enzymes. As the concentration of reductase increases, lyase activity increases relative to hydroxylase until the rates of the activities become almost equal. Vmax is the same for both activities (hydroxylase and lyase) of the two enzymes (6.3-6.5 nmol/min/nmol of P-450). Km for reductase is approximately the same for the hydroxylase activities (0.4-0.6 microM) and for the lyase activities (1.7-2.0 microM) of the two enzymes. Antibodies to reductase, when added to testicular microsomes, inhibit both activities, but inhibition of lyase is greater than that of hydroxylase. The enzyme activity of reductase in testicular microsomes is 3-4 times higher than that of adrenal microsomes (0.29 and 0.08 nmol/min/mg of protein, respectively). These findings may account for the greater activity of lyase in testicular as opposed to adrenal microsomes.  相似文献   

8.
A multicomponent enzyme system that catalyzes the reduction of hydroxylamine and a number of its mono- and disubstituted derivatives by NADH has been isolated from microsomes. Three protein fractions isolated from pig liver microsomes are required to reconstitute NADH-hydroxylamine reductase activity. Two of the proteins appear identical with detergent-extracted cytochrome b5, and its flavoprotein reductase. The third protein fraction required for activity differs from previously isolated microsomal proteins. This fraction is free from detectable chromophores that absorb in the visible region of the spectrum and also appears free from metals. The properties of the NADH-hydroxylamine reductase reconstituted with the three components isolated from microsomes appears similar to the particle-bound system with respect to nucleotide and N-hydroxylamine substrate specificity.  相似文献   

9.
Uninduced rat liver microsomes and NADPH-Cytochrome P-450 reductase, purified from phenobarbital-treated rats, catalyzed an NADPH-dependent oxidation of hydroxyl radical scavenging agents. This oxidation was not stimulated by the addition of ferric ammonium sulfate, ferric citrate, or ferric-adenine nucleotide (AMP, ADP, ATP) chelates. Striking stimulation was observed when ferric-EDTA or ferric-diethylenetriamine pentaacetic acid (DTPA) was added. The iron-EDTA and iron-DTPA chelates, but not unchelated iron, iron-citrate or iron-nucleotide chelates, stimulated the oxidation of NADPH by the reductase in the absence as well as in the presence of phenobarbital-inducible cytochrome P-450. Thus, the iron chelates which promoted NADPH oxidation by the reductase were the only chelates which stimulated oxidation of hydroxyl radical scavengers by reductase and microsomes. The oxidation of aminopyrine, a typical drug substrate, was slightly stimulated by the addition of iron-EDTA or iron-DTPA to the microsomes. Catalase inhibited potently the oxidation of scavengers under all conditions, suggesting that H2O2 was the precursor of the hydroxyl radical in these systems. Very high amounts of superoxide dismutase had little effect on the iron-EDTA-stimulated rate of scavenger oxidation, whereas the iron-DTPA-stimulated rate was inhibited by 30 or 50% in microsomes or reductase, respectively. This suggests that the iron-EDTA and iron-DTPA chelates can be reduced directly by the reductase to the ferrous chelates, which subsequently interact with H2O2 in a Fenton-type reaction. Results with the reductase and microsomal systems should be contrasted with results found when the oxidation of hypoxanthine by xanthine oxidase was utilized to catalyze the production of hydroxyl radicals. In the xanthine oxidase system, ferric-ATP and -DTPA stimulated oxidation of scavengers by six- to eightfold, while ferric-EDTA stimulated 25-fold. Ferric-desferrioxamine consistently was inhibitory. Superoxide dismutase produced 79 to 86% inhibition in the absence or presence of iron, indicating an iron-catalyzed Haber-Weiss-type of reaction was responsible for oxidation of scavengers by the xanthine oxidase system. These results indicate that the ability of iron to promote hydroxyl radical production and the role that superoxide plays as a reductant of iron depends on the nature of the system as well as the chelating agent employed.  相似文献   

10.
Preparations of rat-liver mitochondria catalyze the oxidation of exogenous NADH by added cytochrome c or ferricyanide by a reaction that is insensitive to the respiratory chain inhibitors, antimycin A, amytal, and rotenone, and is not coupled to phosphorylation. Experiments with tritiated NADH are described which demonstrate that this "external" pathway of NADH oxidation resembles stereochemically the NADH-cytochrome c reductase system of liver microsomes, and differs from the respiratory chain-linked NADH dehydrogenase. Enzyme distributation data are presented which substantiate the conclusion that microsomal contamination cannot account for the rotenone-insensitive NADH-cytochrome c reductase activity observed with the mitochondria. A procedure is developed, based on swelling and shrinking of the mitochondria followed by sonication and density gradient centrifugation, which permits the separation of two particulate subfractions, one containing the bulk of the respiratory chain components, and the other the bulk of the rotenone-insensitive NADH-cytochrome c reductase system. Morphological evidence supports the conclusion that the former subfraction consists of mitochondria devoid of outer membrane, and that the latter represents derivatives of the outer membrane. The data indicate that the electron-transport system associated with the mitochondrial outer membrane involves catalytic components similar to, or identical with, the microsomal NADH-cytochrome b5 reductase and cytochrome b5.  相似文献   

11.
Hen liver microsomes contained 0.20 nmol of cytochromeb5 per mg of protein. Upon addition of NADH about 95% cytochrome b5 was reduced very fast with a rate constant of 206 s?1When ferricyanide was added to the reaction system the cytochrome stayed in the oxidized form until the ferricyanide reduction was almost completed. The reduced cytochrome b5 in microsomes was oxidized very rapidly by ferricyanide. The rate constant of 4.5 × 108m?1 s?1, calculated on the basis of assumption that ferricyanide reacts directly with the cytochrome, was found to be more than 100 times higher than that of the reaction between ferricyanide and soluble cytochrome b5. To explain the results, therefore, the reverse electron flow from cytochrome b5 to the flavin coenzyme in microsomes was assumed.By three independent methods the specific activity of the microsomes was measured at about 20 nmol of NADH oxidized per s per mg of protein and it was concluded that the reduction of the flavin coenzyme of cytochrome b5 reductase by NADH is rate-limiting in the NADH-cytochrome b5 and NADH-ferricyanide reductase reactions of hen liver microsomes. In the NADH-ferricyanide reductase reaction the apparent Michaelis constant for NADH was 2.8 μm and that for ferricyanide was too low to be measured. In the NADH-cytochrome c reductase reaction the maximum velocity was 2.86 nmol of cytochrome c reduced per s per mg of protein and the apparent Michaelis constant for cytochrome c was 3.8 μm.  相似文献   

12.
Incubation of a rat liver total homogenate with radioactive choline and subsequent isolation of subcellular fractions, at different times, showed similar patterns of labeling. Incubation of microsomes, mitochondria and purified nuclei isolated from rat liver, showed that all fractions were able to incorporate the precursor into phosphatidyl choline. The specific activity was higher in mitochondria and increased in all cases with added supernatant. The addition of microsomes to mitochondria diminished the incorporation of label. Contamination of mitochondria by microsomes, was negligible as shown by undetectable amounts of cytochrome P450, while NADPH2 cytochrome c reductase showed a 10% contamination. A certain amount of radioactivity was incorporated in the absence of ATP and oxidizable substrates due to the presence of substrates and cofactors in the fraction and/or the supernatant. Labeled fractions reincubated with unlabeled choline, showed no loss of radioactivity, proving that incorporation was not due to simple exchange processes. It is concluded that although rat liver mitochondria can acquire part of their own provision of phosphatidyl choline by transference from microsomes, all organelles and specially mitochondria, can independently synthesize this phospholipid.  相似文献   

13.
An antibody preparation elicited against purified, lysosomal-solubilized NADH-cytochrome b5 reductase from rat liver microsomes was shown to interact with methemoglobin reductase of human erythrocytes by inhibiting the rate of erythrocyte cytochrome b5 reduction by NADH. The ferricyanide reductase activity of the enzyme was not inhibited by the antibody, suggesting that the inhibition of methemoglobin reductase activity may be due to interference with the binding of cytochrorme b5 to the flavoprotein. Under conditions of limiting concentrations of flavoprotein, the antibody inhibited the rate of methemoglobin reduction in a reconstituted system consisting of homogeneous methemoglobin reductase and cytochrome b5 from human erythrocytes. This inhibition was due to the decreased level of reduced cytochrome b5 during the steady state of methemoglobin reduction while the rate of methemoglobin reduction per reduced cytochrome b5 stayed constant, suggesting that the enzyme was not concerned with an electron transport between the reduced cytochrome b5 and methemoglobin.An antibody to purified, trypsin-solubilized cytochrome b5 from rat liver microsomes was shown to inhibit erythrocyte cytochrome b5 reduction by methemoglobin reductase and NADH to a lesser extent than microsomal cytochrome b5 preparations from rat liver (trypsin solubilized or detergent solubilized) and pig liver (trypsin solubilized). The results presented establish that soluble methemoglobin reductase and cytochrome b5 of human erythrocytes are immunochemically similar to NADH-cytochrome b5 reductase and cytochrome b5 of liver microsomes, respectively.  相似文献   

14.
Activation of HMG-CoA reductase by microsomal phosphatase   总被引:1,自引:0,他引:1  
HMG-CoA reductase activity can be modulated by a reversible phosphorylation-dephosphorylation with the phosphorylated form of the enzyme being inactive and the dephosphorylated form, active. Phosphatases from diverse sources, including cytosol, have been shown to dephosphorylate and activate HMG-CoA reductase. The present study demonstrates phosphatase activity capable of activating HMG-CoA reductase that is associated with purified microsomes. The incubation of microsomes at 37 degrees C for 40 min results in a twofold stimulation of HMG-CoA reductase activity, and this stimulation is blocked by sodium fluoride or phosphate. The ability of microsomes to increase HMG-CoA reductase activity occurs regardless of whether microsomes are prepared by ultracentrifugation or calcium precipitation. Additionally, phosphatases capable of activating HMG-CoA reductase are present in both the smooth and rough endoplasmic reticulum. Freeze-thawing does not prevent microsomes from activating HMG-CoA reductase but preincubation results in a significant decrease in the ability of microsomes to increase HMG-CoA reductase activity. Thus, the present study demonstrates that purified liver microsomes contain phosphatase activity capable of activating HMG-CoA reductase.  相似文献   

15.
Experiments were performed to demonstrate the involvement of electron transport system in fatty acid elongation in rat brain microsomes. Mercuric chloride and p-chloromercuriphenylsulfonate, inhibitors on NADH-cytochrome b5 reductase, at 32 microM inhibited NADH-supported palmitoyl-CoA elongation to 30 and 60% of control activity, respectively, whereas NADPH-supported palmitoyl-CoA elongation was unaffected by these mercurials. An antibody to rat liver NADH-cytochrome b5 reductase inhibited brain microsomal NADH-cytochrome b5 reductase activity and NADH-dependent palmitoyl-CoA elongation. Treatment of brain microsomes with trypsin diminished the cytochrome b5 content; NADH- and NADPH-cytochrome c reductase activities were significantly decreased, but the decrease in NADH-cytochrome b5 reductase activity was relatively small. Whereas essentially no incorporation of malonyl-CoA into palmitoyl-CoA was observed with trypsin-treated microsomes, addition of detergent-solubilized cytochrome b5 resulted in a recovery of fatty acid elongation. These results indicate the presence of an electron transport system, NADH-NADH-cytochrome b5 reductase-cytochrome b5-fatty acid elongation, in brain microsomes.  相似文献   

16.
Hamster adrenal HMG-CoA reductase activity was enhanced with rat liver cytosolic phosphorylase phosphatase as well as with similarly isolated beef and hamster adrenal cytosolic preparations. HMG-CoA reductase was inactivated when microsomes were incubated in an EDTA-free medium but containing MgCl2 and ATP. The reductase activity of microsomes isolated from adrenals of hamsters sacrificed at 1100 h and 1900 h were (mean ± SEM, pmo1/mg protein/min.) 299.6±62.3 and 588.3 ± 96.6 respectively and could be enhanced by a factor of four when preincubated in the presence of liver phosphatase.  相似文献   

17.
Lanosterol was converted to a 14-demethylated metabolite, 4,4-dimethylzymosterol by Saccharomyces cerevisiae microsomes. This metabolism was mediated by a cytochrome P-450 (P-450/14DM). However, a reconstituted system consisting of P-450/14DM and its reductase converted lanosterol to the 14-desaturated derivative of 4,4-dimethylzymosterol, 4,4-dimethyl-5 alpha-cholesta-8, 14,24-trien-3 beta-ol (trienol). When AY-9944 was added to the reaction system with the microsomes, the trienol was formed with corresponding decrease in 4,4-dimethylzymosterol. These observations indicate that the 14 alpha-demethylation of lanosterol by yeast microsomes occurs sequentially via the trienol. Reduction of the trienol to 4,4-dimethylzymosterol is mediated by an AY-9944-sensitive reductase.  相似文献   

18.
Comparison of the microsomal NADPH-cytochrome c reductase activities in the four Tetrahymena cells (pyriformis, strain GL and NT-1; thermophilia; ISO) and rat liver was studied. The reductase activity in strain NT-1 was lowest among four Tetrahymena cells grown at 24 degrees C. Rabbit antibody was prepared against the purified NADPH-cytochrome c reductase from Tetrahymena pyriformis (strain NT-1) microsomes. Microsomal NADPH-cytochrome c reductase activities in various Tetrahymena cells were inhibited in proportion to the amount of antibody added, in the order of GL greater than NT-1 greater than thermophilia greater than ISO. No inhibition of reductase activity by antibody was observed in rat liver microsomes.  相似文献   

19.
The regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A: cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine was studied in vitro. Preparing intestinal microsomes in the presence of 50 mM NaF caused a 64% decrease in the reductase activity. It had no effect on acyl-CoA: cholesterol acyltransferase activity. Microsomes that were prepared in NaF were incubated with intestinal cytosol, a partially purified phosphatase from cytosol, and Escherichia coli alkaline phosphatase. All three preparations increased 3-hydroxy-3-methylglutaryl-CoA reductase by two- or three-fold suggesting dephosphorylation and ‘reactivation’ of enzyme activity. Cytosol caused a 78% increase in acyl-CoA: cholesterol acyltransferase activity, but neither the partially purified phosphatase nor the E. coli alkaline phosphatase affected the acyltransferase activity. Microsomes incubated with increasing concentrations of MgCl2 and ATP decreased both the activities of 3-hydroxy-3-methylglutaryl-CoA reductase and acylcoenzyme A: cholesterol acyltransferase in a step-wise fashion. Whereas this inhibitory effect was specific for reductase, the effect on acyl-CoA: cholesterol acyltransferase activity was secondary to the presence of ATP in the assay mixture. The 8500×g supernatant of intestinal whole homogenate from isolated intestinal cells or scraped mucosa was incubated with MgCl2, ATP and NaF. In microsomes prepared from this supernatant, the activity of 3-hydroxy-3-methylglutaryl-CoA reductase was significantly decreased. Again, no change was observed in the acyltransferase activity. The rate of cholesterol esterification in isolated intestinal cells was not affected by 0.1 mM cAMP or 50 mM NaF. We conclude that under conditions which regulate 3-hydroxy-3-methylglutaryl-CoA reductase activity in rabbit intestine by phosphorylation-dephosphorylation, no regulation of acyl-CoA: cholesterol acyltransferase activity is observed.  相似文献   

20.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号