首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Spatial diffusion reflection (DR) measurements of gold nanorods (GNR) were recently suggested as a simple and highly sensitive non‐invasive and non‐ionizing method for real‐time cancer detection. In this paper we demonstrate that wavelength dependent DR measurements enable the spectral red‐shift observation of highly concentrated GNR. By conjugating targeting moieties to the GNR, large density of GNR can specifically home onto cancer cells. The inter‐particle plasmon resonance pattern of the highly concentrated GNR leads to an extension and a red‐shift (Δλ) in the absorption spectrum of the concentrated GNR. Dark‐field microscopy was used in order to measure the expected Δλ in different GNR concentrations in vitro. Double‐wavelength DR measurements of tissue‐like phantoms and tumor bearing mice containing different GNR concentrations are presented. We show that the DR profile of the highly concentrated GNR directly correlate with the spectral extension and red‐shift. This presented work suggests that wavelength dependent DR method can serve as a promising tool for real‐time superficial tumor detection. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Aims: The aim of this study was to evaluate the variability in lots of a DNA extraction kit using real‐time PCR assays for Bacillus anthracis, Francisella tularensis and Vibrio cholerae. Methods and Results: Replicate aliquots of three bacteria were processed in duplicate with three different lots of a commercial DNA extraction kit. This experiment was repeated in triplicate. Results showed that cycle threshold values were statistically different among the different lots. Conclusions: Differences in DNA extraction reagent lots were found to be a significant source of variability for qPCR results. Steps should be taken to ensure the quality and consistency of reagents. Minimally, we propose that standard curves should be constructed for each new lot of extraction reagents, so that lot‐to‐lot variation is accounted for in data interpretation. Significance and Impact of the Study: This study highlights the importance of evaluating variability in DNA extraction procedures, especially when different reagent lots are used. Consideration of this variability in data interpretation should be an integral part of studies investigating environmental samples with unknown concentrations of organisms.  相似文献   

8.
9.

Aim

Create a method for highly sensitive, selective, rapid and easy‐to‐use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously.

Methods and Results

Test‐systems for real‐time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test‐systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 μl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA® amplifier.

Conclusions

Preloaded 30‐reaction micromatrices having shelf life of 3 and 6 months (for RNA‐ and DNA‐based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg).

Significance and Impact of the Study

The accurate, rapid and user‐friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies.  相似文献   

10.
Phytophthora nicotianae is a phytopathogenic oomycete with a wide host range and worldwide distribution. Rapid detection and diagnosis at the early stages of disease development are important for the effective control of P. nicotianae. In this study, we designed a simple and rapid loop‐mediated isothermal amplification (LAMP)‐based detection method for P. nicotianae. We tested three DNA extraction methods and selected the Kaneka Easy DNA Extraction Kit version 2, which is rapid and robust for LAMP‐based detection. The designed primers were tested using mycelial DNA from 35 species (81 isolates) of Phytophthora, 12 species (12 isolates) of Pythium, one isolate of Phytopythium and one isolate each from seven other soil‐borne pathogens. All of the 42 P. nicotianae isolates were detected by these primers, and no other isolates gave positive results. Three isolates were tested for the sensitivity of the reaction, and the lowest amounts of template DNA that could be detected were 10 fg for two isolates and 1 fg for the third. The target was detected within 25 min in all tested samples, including DNA extracted from both inoculated and naturally infected plants. In contrast, PCR assays with P. nicotianae‐specific primers failed or showed weakened detection in several samples. Thus, we found that the rapid DNA extraction and LAMP assay methods developed in this study can be used to detect P. nicotianae with high sensitivity, specificity and stability.  相似文献   

11.
Aims: To develop fast and reliable sampling procedures for DNA‐based diagnosis of wood decay fungi in standing trees. Methods and Results: A total of 250 trees were tested for the presence of a suite of wood decay fungi by collecting wood frass obtained by drilling each tree once with a 4‐mm‐diameter, 43‐cm‐long bit. We identified at least one of 11 target wood decay fungi in 56 trees through multiplex PCR assays. The presence of target wood decay taxa was further investigated in these 56 trees, by analysing independently wood from each of six drillings. Results were then compared with those obtained using sampling schemes differing in terms of number and position of drillings. Samples of 1–4 drillings were either analysed separately, and the results were combined, or pooled together before analysis was performed. In comparison with taxa identified by the analysis of six drillings, diagnostic efficiency ranged from 56·6% for the scheme based on a single drill to 96·8% for the scheme based on four drillings analysed separately. Both schemes significantly differ (P < 0·05) from those based on two and three drillings, whose efficiency was 72·6% and 83·9%, respectively. Diagnostic efficiency of pooled samples was comparable to that of samples analysed separately. Conclusions: Highest diagnostic efficiency was obtained by analysing wood from four drillings. It is advisable to pool samples deriving from different drillings to reduce laboratory costs. Significance and Impact of the Study: Fast and reliable sampling procedures make DNA‐based diagnosis more suitable for tree inspection procedures.  相似文献   

12.
The effect of predation on native fish by introduced species in the San Francisco Estuary–Delta (SFE) has not been thoroughly studied despite its potential to impact species abundances. Species‐specific quantitative PCR (qPCR) is an accurate method for identifying species from exogenous DNA samples. Quantitative PCR assays can be used for detecting prey in gut contents or faeces, discriminating between cryptic species, or detecting rare aquatic species. We designed ten TaqMan qPCR assays for fish species from the SFE watershed most likely to be affected by non‐native piscivores. The assays designed are highly specific, producing no signal from co‐occurring or related species, and sensitive, with a limit of detection between 3.2 and 0.013 pg/μL of target DNA. These assays will be used in conjunction with a high‐throughput qPCR platform to compare predation rates between native and non‐native piscivores and assess the impacts of predation in the system.  相似文献   

13.
Diagnostic biomarkers such as proteins and enzymes are generally hard to detect because of the low abundance in biological fluids. To solve this problem, the advantages of surface plasmon resonance (SPR) and nanomaterial technologies have been combined. The SPR sensors are easy to prepare, no requirement of labelling and can be detected in real time. In addition, they have high specificity and sensitivity with low cost. The nanomaterials have also crucial functions such as efficiency improvement, selectivity, and sensitivity of the detection systems. In this report, an SPR‐based sensor is developed to detect lysozyme with hydrophobic poly (N‐methacryloyl‐(L)‐phenylalanine) (PMAPA) nanoparticles. The SPR sensor was first characterized by attenuated total reflection‐Fourier transform infrared, atomic force microscope, and water contact angle measurements and performed with aqueous lysozyme solutions. Various concentrations of lysozyme solution were used to calculate kinetic and affinity coefficients. The equilibrium and adsorption isotherm models of interactions between lysozyme solutions and SPR sensor were determined and the maximum reflection, association, and dissociation constants were calculated by Langmuir model as 4.87, 0.019 nM−1, and 54 nM, respectively. The selectivity studies of SPR sensor were investigated with competitive agents, hemoglobin, and myoglobin. Also, the SPR sensor was used four times in adsorption/desorption/recovery cycles and results showed that, the combination of optical SPR sensor with hydrophobic ionizable PMAPA nanoparticles in one mode enabled the detection of lysozyme molecule with high accuracy, good sensivity, real‐time, label‐free, and a low‐detection limit of 0.66 nM from lysozyme solutions. Lysozyme detection in a real sample was performed by using chicken egg white to evaluate interfering molecules present in the medium.  相似文献   

14.
15.
16.
17.
Aims: To develop a rapid, sensitive, specific tool for the detection and quantification of Lactococcus garvieae in food and environmental samples. Methods and Results: A real‐time quantitative PCR (qPCR) assay with primers for CAU12F and CAU12R based on the 16S rRNA gene of L. garvieae was successfully established. The limit of detection for L. garvieae genomic DNA was 1 ng DNA in conventional PCR and 32 fg with a mean CT value of 36·75 in qPCR. Quantification of L. garvieae vegetative cells was linear (R2 = 0·99) over a 7‐log‐unit dynamic range down to ten L. garvieae cells. Conclusions: This method is highly specific, sensitive and reproducible for the detection of L. garvieae compared to gel‐based conventional PCR assays, thus providing precise quantification of L. garvieae in food and natural environments. Significance and Impact of the Study: This work provides efficient diagnostic and monitoring tools for the rapid identification of L. garvieae, an emerging pathogen in aquaculture and an occasional human pathogen from other members of the genus Lactobacillus.  相似文献   

18.
Aims: It is difficult to determine the effects of bactericidal compounds against bacteria in a biofilm because classical procedures for determining cell viability require several working days, multiple complicated steps and are frequently only applicable to cells in suspension. We attempt to develop a compact, inexpensive and versatile system to measure directly the extent of biofilm formation from water systems and to determine the viability of respiring bacteria in high surface biofilms. Methods and Results: It has been reported that the reduction of tetrazolium sodium salts, such as XTT (sodium 3,3′‐[1‐[(phenylamino)carbonyl]‐3,4‐tetrazolium]Bis(4‐methoxy)‐6‐nitro)benzene sulfonic acid hydrate), during active bacterial metabolism can be incorporated into a colorimetric method for quantifying cell viability. XTT is reduced to a soluble formazan compound during bacterial aerobic metabolism such that the amount of formazan generated is proportional to the bacterial biomass. Conclusions: We show here, for the first time, that this colorimetric approach can be used to determine the metabolic activity of adherent aerobic bacteria in a biofilm as a measure of cell viability. This technique has been used to estimate viability and proliferation of bacteria in suspension, but this is the first application to microbial communities in a real undisturbed biofilm. Significance and Impact of the Study: This simple new system can be used to evaluate the complex biofilm community without separating the bacteria from their support. Thus, the results obtained by this practice may be more representative of the circumstances in a natural system, opening the possibility to multiple potential applications.  相似文献   

19.
Aims: To optimize growth conditions for preparation of stocks of mycoplasma reference strains to obtain highly viable and disperse samples with low ratios of genomic copy (GC) number to that of colony forming units (CFU). These stocks are required for assessment of relative limits of detection (LOD) of alternative nucleic acid testing (NAT)‐based methods in comparison to the conventional microbiological methods. Methods and Results: A kinetics study was used to assess the changes in ratios between the numbers of GC and CFU at different growth phases of six different mycoplasma cultures Acholeplasma laidlawii, Mycoplasma gallisepticum, Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma orale and Mycoplasma pneumoniae. All tested mycoplasmas demonstrated low GC/CFU ratios (≤10) within the log and early stationary growth phases. A significant increase in GC/CFU ratios was observed at the very late stationary and death phases, when the titre of cultures has declined. Similar patterns of GC/CFU profiles were observed for A. laidlawii and Myc. gallisepticum co‐cultured with suspension of Chinese hamster ovary (CHO) cells. Conclusions: Tested mycoplasma strains harvested at the exponential‐early stationary phases of growth demonstrated the lowest GC/CFU ratios and low propensity to form filamentous structures or aggregates under proposed conditions and can be used for the preparation of a mycoplasma reference panel for methods comparability study. Significance and Impact of the Study: This study shows that the preparation and use of viable mycoplasma reference strains with low CG/CFU ratios is the most reliable way to adequately evaluate the LOD of alternative NAT‐based mycoplasma testing methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号