首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region ?2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.  相似文献   

2.
Partial or complete sterility is an obvious feature in triploid Pacific oyster (Crassostrea gigas) which contributes to improving rearing performances. Despite the significance of sterility, the molecular mechanism behind it remains elusive and related research was limited. This study focused on six reproduction-related genes and compared their different behavior in gene expression and DNA methylation pattern between triploid and diploid oysters in order to provide more molecular information. The gonadal development of triploid oyster was examined by histology before molecular analysis. Gametogenesis disturbance was observed in triploid oysters at different development stages (stage II and III) with more serious impairment in females. QPCR showed significant gene expression difference between diploid and triploid in two genes: putative Vg and cgER. Gene expression of putative Vg was delayed in triploids while for cgER triploid oyster showed higher expression and the difference was significant at stage III. DNA methylation pattern of these two genes were further investigated by bisulfite sequencing. Between diploid and triploid oysters, no difference was observed in total methylation level but some individual loci showed different patterns: significantly high methylation rate of loci 2284 in cgER was observed in triploid oyster which has a higher expression of this gene. This study indicated that putative Vg and cgER might play a role in partial sterile in triploid C. gigas. Gene expression could be regulated by the methylation pattern at specific individual locus, which deserves equivalent attention as well as total DNA methylation level.  相似文献   

3.
4.
5.
In Arabidopsis, it has been clarified that AGO4 protein is implicated in a phenomenon termed RNA-directed DNA methylation (RdDM). Previously, four orthologs of AtAGO4 were cloned in tomato, designated as SlAGO4ASlAGO4D. Here, we studied the role of the SlAGO4A gene in regulating salt and drought tolerance in tomato. SlAGO4A-down-regulating (AS) transgenic tomato plants showed enhanced tolerance to salt and drought stress compared to wild-type (WT) and SlAGO4A-overexpressing (OE) transgenic plants, as assessed by physiological parameters such as seed germination rate, primary root length, chlorophyll/proline/MDA/soluble sugar/RWC content, and survival rate. Moreover, several genes involved in ROS scavenging and plant defense, including CAT, SOD, GST, POD, APX, LOX, and PR1, were up- or down-regulated consistently under salt and drought stress. Notably, expression levels of some DNA methyltransferase genes and RNAi pathway genes were significantly lower in AS plants than in WT. Taken together, our results suggest that SlAGO4A gene plays a negative role under salt and drought stress in tomato probably through the modulation of DNA methylation as well as the classical RNAi pathway. Hence, it may serve as a useful biotechnological tool for the genetic improvement of stress tolerance in crops.  相似文献   

6.
7.
Traditional rice landraces of coastal area in Bangladesh are distinct regarding their phenotype, response to salt stress and yield attributes. With characterization of these landraces, suitable candidate genes for salinity tolerance could be identified to introgress into modern rice varieties. Therefore, the aim of this experiment was to uncover prospective rice landraces tolerant to salinity. Relying on morphological, biochemical and molecular parameters 25 rice genotypes were tested for salt tolerance at germination and seedling stage. At germination stage 0 and 12 dSm?1 salinity were imposed on rice genotypes. Ward’s cluster analysis divided rice genotypes into three clusters (susceptible, moderately tolerant and tolerant) based on the physiological indices. The tolerant rice landraces to salinity were Sona Toly, Nakraji and Komol Bhog. At seedling stage screening was performed following IRRI standard protocol at 12 dSm?1 salinity level. Based on all morphological and biochemical parameters Komol Bhog was identified as the highly salinity tolerant landrace while Bolonga, Sona Toly, Dud Sail, Tal Mugur and Nakraji were found as tolerant to salinity. Molecular characterization using two simple sequence repeats (SSR) markers, viz. RM121 and RM337 displayed Bolonga, Til Kapor, Panbra, Sona Toly, Bina Sail, Komol Bhog, Nakraji, Tilkapur, Gajor Goria and Gota were tolerant landraces through genetic similarity in dendrogram. These identified salt-resistant landraces can be used as promising germplasm resources for breeding salt-tolerant high-yielding rice varieties in future.  相似文献   

8.
More than 20% of irrigated land has been influenced by salt stress, decreasing crop production. In this research, we investigated the effect of different levels of salinity (0, 50, 100 and 150 mM NaCl) and the efficiency of Piriformospora indica on growth, biochemical traits, antioxidative defense system in tomato (Solanum lycopersicum L.). NaCl stress reduced chlorophyll content, height and biomass of plants. Higher level of salinity (150 mM) declined the plant height by 22.65%, total dry weight by 56.44% and total chlorophyll by 44.34%, however, P. indica inoculation raised plant height by 43.47%, dry weight by 69.23% and total chlorophyll content by 48.09%. Salinity stress increased H2O2, malondialdehyde (MDA), superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) level in leaves and roots tomato seedlings. However, P. indica inoculation reduced H2O2, MDA and superoxide anion and enhanced DPPH compared to non-inoculated plants at all NaCl levels. The total phenol and flavonoids increased with NaCl treatment. On the other hand, the total phenolic and flavonoid increased more in P. indica inoculated plants compared to non-inoculated ones. Moreover, inoculation of P. indica implicated noteworthy improvement of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) activity in tomato upon salinity. Notably, colonization with P. indica significantly improved the content of reduced ascorbic acid (AsA), glutathione (GSH) and redox ratio in the tomato plants under salinity resulting in reduced redox state. Our findings confirmed that salinity had negative effect on tomato seedling; however, P. indica inoculation increased tolerance to salinity by improving the content of phenolic compounds, non-enzymatic antioxidants, and increasing the activity of antioxidant enzymes.  相似文献   

9.
Heat shock proteins (HSPs) are ubiquitous protective proteins that play crucial roles in plant development and adaptation to stress, and the aim of this study is to characterize the HSP gene in alfalfa. Here we isolated a small heat shock protein gene (MsHSP17.7) from alfalfa by homology-based cloning. MsHSP17.7 contains a 477-bp open reading frame and encodes a protein of 17.70-kDa. The amino acid sequence shares high identity with MtHSP (93.98 %), PsHSP17.1 (83.13 %), GmHSP17.9 (74.10 %) and SlHSP17.6 (79.25 %). Phylogenetic analysis revealed that MsHSP17.7 belongs to the group of cytosolic class II small heat shock proteins (sHSP), and likely localizes to the cytoplasm. Quantitative RT-PCR indicated that MsHSP17.7 was induced by heat shock, high salinity, peroxide and drought stress. Prokaryotic expression indicated that the salt and peroxide tolerance of Escherichia coli was remarkably enhanced. Transgenic Arabidopsis plants overexpressing MsHSP17.7 exhibited increased root length of transgenic Arabidopsis lines under salt stress compared to the wild-type line. The malondialdehyde (MDA) levels in the transgenic lines were significantly lower than in wild-type, although proline levels were similar between transgenic and wild-type lines. MsHSP17.7 was induced by heat shock, high salinity, oxidative stress and drought stress. Overexpression analysis suggests that MsHSP17.7 might play a key role in response to high salinity stress.  相似文献   

10.
11.
The seaweed genus Gracilaria is a potential candidate for the production of bioethanol due to its high carbohydrate content. Gracilaria is abundant throughout the world and can be found in both wild and cultivated forms. Differences in the ecological factors such as temperature, salinity, and light intensity affecting wild and cultivated specimens may influence the biochemical content of seaweeds, including the carbohydrate content. This study aimed to investigate the proximate composition and potential bioethanol production of wild and cultivated G. gigas and G. verrucosa. Bioethanol was produced using separate hydrolysis fermentation (SHF), employing a combination of enzymatic and acid hydrolysis, followed by fermentation with Saccharomyces cerevisiae ATCC 200062. The highest carbohydrate content was found in wild G. gigas. The highest galactose and glucose contents (20.21 ± 0.32 and 9.70 ± 0.49 g L?1, respectively), as well as the highest production of bioethanol (3.56 ± 0.02 g L?1), were also found in wild G. gigas. Thus, we conclude that wild G. gigas is the most promising candidate for bioethanol production. Further research is needed to optimize bioethanol production from wild G. gigas. Domestication of wild G. gigas is a promising challenge for aquaculture to avoid overexploitation of this wild seaweed resource.  相似文献   

12.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

13.
As salinity is a major threat to sustainable agriculture worldwide, cultivation of salt-tolerant crops becomes increasingly important. IrrE acts as a global regulator and a general switch for stress resistance in Deinococcus radiodurans. In this study, to determine whether the irrE gene can improve the salt tolerance of Brassica napus, we introduced the irrE gene into B. napus by the Agrobacterium tumefaciens-mediated transformation method. Forty-two independent transgenic plants were regenerated. Polymerase chain reaction (PCR) analyses confirmed that the irrE gene had integrated into the plant genome. Northern as well as Western blot analyses revealed that the transgene was expressed at various levels in transgenic plants. Analysis for the T1 progenies derived from four independent transformants showed that irrE had enhanced the salt tolerance of T1 in the presence of 350 mM NaCl. Furthermore, under salt stress, transgenic plants accumulated more compatible solutes (proline) and a lower level of malondialdehyde (MDA), and they had higher activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). However, agronomic traits were not affected by irrE gene overexpression in the transgenic B. napus plants. This study indicates that the irrE gene can improve the salt tolerance of B. napus and represents a promising candidate for the development of crops with enhanced salt tolerance by genetic engineering.  相似文献   

14.
15.
16.
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.  相似文献   

17.
A greenhouse experiment was conducted in which two leguminous species commonly used in the Yellow River Delta for vegetation restoration, Robinia pseudoacacia and Amorpha fruticosa, were subjected to five salt treatments: 0, 50, 100, 150, and 200 mmol L?1. We aimed to determine which of the two species would be better suited for growth in a saline environment, and whether the acclimation capacity to salinity resulted from an inherently higher phenotypic plasticity. The results showed that salinity affected most growth and biomass parameters but had no effects on most leaf traits and physiological parameters of the two species. Height, relative growth rate of crown area, root biomass, and leaf mass ratio of R. pseudoacacia were reduced by higher salinity, while A. fruticosa was not affected. Chlorophyll a-to-chlorophyll b ratio and total antioxidative capacity of A. fruticosa increased with higher salinity, whereas those of R. pseudoacacia remained unchanged. Root mass ratio and vitamin C concentration of both species were not affected by salinity, whereas vitamin C concentration of A. fruticosa was higher than that of R. pseudoacacia. The root-to-shoot ratio of A. fruticosa was higher than that of R. pseudoacacia in most salt treatments. Of all leaf traits, only leaf area differed between treatments. R. pseudoacacia generally exhibited a greater plasticity than A. fruticosa in response to salinity, but A. fruticosa was more resistant to the higher salinities than R. pseudoacacia, and was thus a better candidate for vegetation restoration in saline areas.  相似文献   

18.
19.
20.

Background

The re-sequencing of C. angulata has revealed many polymorphisms in candidate genes related to adaptation to abiotic stress that are not present in C. gigas; these genes, therefore, are probably related to the ability of this oyster to retain high concentrations of toxic heavy metals. There is, in addition, an unresolved controversy as to whether or not C. angulata and C. gigas are the same species or subspecies. Both oysters have 20 metacentric chromosomes of similar size that are morphologically indistinguishable. From a genomic perspective, as a result of the great variation and selection for heterozygotes in C. gigas, the assembly of its draft genome was difficult: it is fragmented in more than seven thousand scaffolds.

Results

In this work sixty BAC sequences of C. gigas downloaded from NCBI were assembled in BAC-contigs and assigned to BACs that were used as probes for mFISH in C. angulata and C. gigas. In addition, probes of H3, H4 histone, 18S and 5S rDNA genes were also used. Hence we obtained markers identifying 8 out the 10 chromosomes constituting the karyotype. Chromosomes 1 and 9 can be distinguished morphologically. The bioinformatic analysis carried out with the BAC-contigs annotated 88 genes. As a result, genes associated with abiotic adaptation, such as metallothioneins, have been positioned in the genome. The gene ontology analysis has also shown many molecular functions related to metal ion binding, a phenomenon associated with detoxification processes that are characteristic in oysters. Hence the provisional integrated map obtained in this study is a useful complementary tool for the study of oyster genomes.

Conclusions

In this study 8 out of 10 chromosome pairs of Crassostrea angulata/gigas were identified using BAC clones as probes. As a result all chromosomes can now be distinguished. Moreover, FISH showed that H3 and H4 co-localized in two pairs of chromosomes different that those previously escribed. 88 genes were annotated in the BAC-contigs most of them related with Molecular Functions of protein binding, related to the resistance of the species to abiotic stress. An integrated genetic map anchored to the genome has been obtained in which the BAC-contigs structure were not concordant with the gene structure of the C. gigas scaffolds displayed in the Genomicus database.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号