首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
DNA synthesis after the ultraviolet irradiation was followed in the excision proficient strainEscherichia coli B/rHcr +, in which the ability to excise thymin dimers was suppressed by a preirradiation inhibition of DNA and protein syntheses and in the excision deficient strainEscherichia coli B/rHcr ?. Synthesis of pulse-labeled DNA, its stability and semiconservative DNA synthesis were compared in both strains. It was found that cells of theHcr + strain restore semiconservative DNA synthesis and the pulselabeled DNA appears stable, in spite of the fact that dimers are not excised under these conditions. On the other hand, cells of theHcr ? strain are unable to restore semiconservative DNA synthesis and the pulselabeled DNA is degraded. As the repair by the excision of dimers under the used experimental conditions may be excluded in both strains, it is possible to assume that activity of enzymes included in theHcr + marker is prerequisite for restoring the DNA synthesizing system in theHcr + strain.  相似文献   

2.
F W Pons 《Mutation research》1973,20(2):149-157
The clone composition of c mutants of phage σ induced by UV irradiation of the free virion was studied, using Hcr+, Hcr? and UV-irradiated Hcr+ cells as hosts and 2, 3 and 4 different UV doses, respectively. Most of the c plaques contained only mutant phages, and the distribution of mosaics was asymmetrical, i.e. most mixed clones contained >80% mutant type. The frequency of mosaics decreased with increasing UV dose in all three host systems; however, the decrease was significant only with the UV-irradiated Hcr+ host. Propagation of UV-irradiated σ in Hcr+ and Hcr? hosts, respectively, did not lead to a significant difference in the frequency of mosaics, but, using UV-irradiated Hcr+ host significantly increased the percentage of mixed clones.The composition of plaques containing c mutants, after UV irradiation and treatment with hydroxylamine, was also studied by picking and testing all plaques (mutant and wild-type) of the survivors of a single UV dose and a single incubation time, respectively. In both experiments, besides pure and nearly pure (visible) c mutant plaques, many cryptic mutants containing predominantly >20% mutant type were found. The distribution of mosaics was of an almost “inverse symmetrical” type, the class of clones with about 50% mutant and 50% wild-type being the rarest.From these results incomplete recombinational repair is suggested to be responsible for the formation of pure mutant clones in mutation induction.  相似文献   

3.
Dependence of the broth effeot and the phenomenon of mutation frequency decline on dose of the applied UV radiation was investigated in the strainEscherichia coli B/r Hcr+ thy trp. Reversions to Trp+ were followed. The degree of the broth effect and the mutation frequency decline is minimal within the range of UV doses corresponding to a survival of cells lower than 10-1. In connection with the two effects, excision of thymine dimers, initiation of synthesis, synthesis and degradation of DNA were also investigated. It was found that stimulation or inhibition of an inaccurate postreplication repair mechanism, rather than inhibition or stimulation of excision of thymine dimers, are responsible for the broth effect and the mutation frequency decline, respectively.  相似文献   

4.

Background

Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but this 'dark' repair capacity remains largely uncharacterized. Halobacterium sp. NRC-1 possesses homologs of the bacterial uvrA, uvrB, and uvrC nucleotide excision repair genes as well as several eukaryotic repair genes and it has been thought that multiple DNA repair pathways may account for the high UV resistance and dark repair capacity of this model halophilic archaeon. We have carried out a functional analysis, measuring repair capability in uvrA, uvrB and uvrC deletion mutants.

Results

Deletion mutants lacking functional uvrA, uvrB or uvrC genes, including a uvrA uvrC double mutant, are hypersensitive to UV and are unable to remove cyclobutane pyrimidine dimers or 6–4 photoproducts from their DNA after irradiation with 150 J/m2 of 254 nm UV-C. The UV sensitivity of the uvr mutants is greatly attenuated following incubation under visible light, emphasizing that photoreactivation is highly efficient in this organism. Phylogenetic analysis of the Halobacterium uvr genes indicates a complex ancestry.

Conclusion

Our results demonstrate that homologs of the bacterial nucleotide excision repair genes uvrA, uvrB, and uvrC are required for the removal of UV damage in the absence of photoreactivating light in Halobacterium sp. NRC-1. Deletion of these genes renders cells hypersensitive to UV and abolishes their ability to remove cyclobutane pyrimidine dimers and 6–4 photoproducts in the absence of photoreactivating light. In spite of this inability to repair UV damaged DNA, uvrA, uvrB and uvrC deletion mutants are substantially less UV sensitive than excision repair mutants of E. coli or yeast. This may be due to efficient damage tolerance mechanisms such as recombinational lesion bypass, bypass DNA polymerase(s) and the existence of multiple genomes in Halobacterium. Phylogenetic analysis provides no clear evidence for lateral transfer of these genes from bacteria to archaea.  相似文献   

5.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

6.
7.
Mutator Gene Studies in Escherichia coli   总被引:13,自引:5,他引:8       下载免费PDF全文
An Escherichia coli mutator gene, mutT, has been shown by P1-mediated crosses to map between the leucine and azide loci. The mutT1 and azi-r alleles cotransduce with a frequency of >92%. In mutT1/mutT+ merodiploids, the mutT1 phenotype is recessive; in mutT1/F′trp or mutT1/F′lac merodiploids, the mutT1 allele has a trans effect. The gene can mutate λ and T7 phage but not T1, T3, T4, T5, and S13.  相似文献   

8.
The Escherichia coli mutT mutator allele produces high frequencies of exclusively A:T-->C:G transversions. This is thought to be caused by a failure to prevent or remove A:G mispairs during DNA replication. The mutD5 mutator allele maps to the dnaQ locus which encodes the epsilon subunit of the DNA polymerase III holoenzyme. This subunit provides 3'-->5' exonuclease, proofreading, activity for removing mispaired nucleotides at the 3' end of the newly synthesized DNA strand. mutD5 has an altered epsilon resulting in reduced levels of proofreading and subsequent high mutation frequencies for all base-pair substitutions. We have analyzed the interaction between mutD5 and mutT-induced A:T-->C:G transversions by measuring reversion frequencies in mutD5 and mutT single mutator strains and mutD5mutT double mutator strains using the well-characterized trpA58 and trpA88 alleles. We find that the double mutator strains produce more A:T-->C:G substitutions than would be expected from simple additivity of the single mutator strains. We interpret this to mean that the two systems, at least in part, do act together to prevent the same mutational intermediate from producing A:T-->C:G transversions. It is estimated that over 90% of the mutT-induced A:G mispairs are corrected by proofreading at the trpA58 site while only about 30% are corrected at trpA88. Reversion frequencies in the mutD5mutT double mutator strains indicate A:G misincorporations occur about 100 x more frequently at trpA58 than at the trpA88 site. Using these and other data we also provide estimations of the fidelity contributions for mutT editing, proofreading and methyl-directed mismatch repair at the two trpA sites for both transversions and the transition that could be scored. In the case of A:T-->C:G transversions, both mutT editing and proofreading make major contributions in error reduction with mismatch repair playing a small or no role at all. For the A:T-->G:C transition, proofreading and mismatch repair were both important in preventing mutations while no contribution was observed for mutT editing.  相似文献   

9.
Survival of UV-irradiated phage λ is increased when the host is lysogenic for a homologous heteroimmune prophage such as λimm434 (prophage reactivation). Survival can also be increased by UV-irradiating slightly the non-lysogenic host (UV reactivation).Experiments on prophage reactivation were aimed at evaluating, in this recombination process, the respective roles of phage and bacterial genes as well as that of the extent of homology between phage and prophage.To test whether UV reactivation was dependent upon recombination between the UV-damaged phage and cellular DNAs, lysogenic host cells were employed. Such hosts had thus as much DNA homologous to the infecting phage as can be attained. Therefore, if recombination between phage and host DNAs was involved in this repair process, it could clearly be evidenced.By using unexposed or UV-exposed host cells of the same type, prophage reactivation and UV reactivation could be compared in the same genetic background.The following results were obtained: (1) Prophage reactivation is strongly decreased in a host carrying recA mutations but quite unaffected by mutation lex-I known to prevent UV reactivation; (2) In the absence of the recA+ function, the red+ but not the int+ function can substitute for recA+ to produce prophage reactivation, although less efficiently; (3) Prophage reactivation is dependent upon the number of prophages in the cell and upon their degree of homology to the infecting phage. The presence in a recA host of two prophages either in cis (on the chromosome) or in trans (on the chromosome and on an episome) increases the efficiency of prophage reactivation; (4) Upon prophage reactivation there is a high rate of recombination between phage and prophage but no phage mutagenesis; (5) The rate of recombination between phage and prophage decreases if the host has been UV-irradiated whereas the overall efficiency of repair is increased. Under these conditions UV reactivation of the phage occurs as in a non-lysogen, as attested by the high rate of mutagenesis of the restored phage.These results demonstrate that UV reactivation is certainty not dependent upon recombination between two pre-existing DNA duplexes. The hypothesis is offered that UV reactivation involves a repair mechanism different from excision and recombination repair processes.  相似文献   

10.
Inactivation of λ11c and its purified DNA by UV irradiation, γ-rays of 137Cs (in conditions of indirect action), nitrous acid, hydroxylamine and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was studied. The biological activity of isolated phage DNA was measured by the calcium transfection procedure. 14 different recipient strains of Escherichia coli K12 were used, including mutants deficient in excision and recombination repair (uvrA6, uvrB5, uvrC34, polA1, recA13, recC38, recD34, recA13B21C22, recA56uvrA6, exrA and recB21C22sbcB15).Whole phage was more resistant to the action of γ-rays than was isolated DNA. On the other hand, the chemical agents HNO2 and MNNG inactivated phage much faster than isolated DNA. Of all mutations of the host cell only polA1 considerably increased the sensitivity of phage DNA to UV irradiation, γ-rays and MNNG. The mutations uvr? affected the inactivation kinetics under UV action. In all other cases the genotype of the host cell was indifferent for the inactivation kinetics of phage DNA, even if it belonged to recombination deficient mutant λ red3 int6 (in which only UV and γ inactivation was studied). Possible reasons for the low efficiency of the host-cell repair toward the damage caused to λ DNA by different agents are discussed.  相似文献   

11.
A polA1 exrA strain of Escherichia coli K-12 was constructed. It was found to be more sensitive to aerobic or anoxic X irradiation than were mutants containing either polA1 or exrA alone. The ability of polA1 exrA and related strains to repair X-ray-induced single-strand breaks in deoxyribonucleic acid DNA was examined. The polA1 strain was deficient in type II (buffer) repair but not in type III (growth medium-dependent) repair. The exrA strain was not deficient in type II repair but was deficient in type III repair (similar to rec strains). The double mutant polA1 exrA was deficient in both type II and type III repair. Thus, the increased X-ray sensitivity of the polA1 exrA double mutant was correlated with its decreased ability to repair X-ray-induced single-strand breaks in DNA. We have tested the hypothesis that polA rec double mutants are not viable because they lack the types II and III systems for the repair of DNA single-strand breaks. Since the polA1 exrA strain is viable and is deficient in both of these repair processes, this hypothesis seems not to be correct.  相似文献   

12.
The mutagenic and lethal action of methyl methanesulphonate (MMS) and dichlorvos (DDVP) has been studied on Escherichia coli WP2 and some derivatives deficient in DNA repair genes. The exrA+ and recA+ alleles were necessary for significant mutagenesis by either compound, and the uvrA gene affected neither the lethal nor mutagenic responses. Increased sensitivity to both compounds was shown by the exrA and uvrAexrA strains and in a more pronounced way by the uvrApolA, recA, and uvrAexrApolA strains.Bacteria deficient at the polA locus were 2 and 3 times more mutable by DDVP and MMS respectively, consistent with the hypothesis that the absence of the polA system for the repair of single-strand gaps results in a greater proportion of the total repair being channelled through the error-prone exrA+/recA+-dependent system. Single-strand breaks were detectable by alkaline sucrose gradient centrifugation after both MMS and DDVP treatment of polA bacteria. Thus in all the tests carried out, both compounds showed similar patterns of activity, and the results are consistent with their known ability to alkylate DNA. The chief differences were quantitative; sensitivity increases were far more pronounced with MMS which was also a far more potent mutagen than DDVP.  相似文献   

13.
Summary The UV-sensitivity of phage and its infectious DNA have been compared in experiments involving infection of normal cells by phage and transfection of lysozyme-EDTA spheroplasts or Ca++-treated cells by phage DNA. It is shown that UV-irradiated DNA undergoes extensive HCR. Since intact phage and free phage DNA have the same survival after UV-irradiation in Hcr- spheroplasts and cells, resp., and since survival is also identical in Ca++-treated Hcr+ cells it is concluded that DNA in solution or packaged in the phage head provides the same target for the induction of lethal UV lesions. This conclusion is supported by the observation that cysteamine provides a similar radioprotection to the intact phage and its free DNA. Spheroplasts of Hcr+ cells, however, have an HCR capacity reduced by about 20% when compared with normal or Ca++-treated cells. Moreover, UV-reactivation of irradiated DNA, which is absent in spheroplasts, occurs efficiently in Ca++-treated cells. Possible reasons for the physiological difference between spheroplasts and normal cells are discussed. c-mutations, which are readily induced by UV in phage assayed with E. coli mul -, could not be induced in DNA when assayed with spheroplasts or Ca++-treated cells of this strain. No mutants were also found with DNA extracted from UV-irradiated phage. The significance of the mode of entry of UV-irradiated DNA into a cell for the production of mutations is discussed.  相似文献   

14.
Stabilization of Lactose Metabolism in Streptococcus lactis C2   总被引:16,自引:9,他引:7       下载免费PDF全文
The integration of the lactose plasmid from lactic streptococci into the host chromosome could stabilize this trait for dairy fermentations. Sixty lactose-positive (Lac+) transductants of lactose- and proteinase-negative (Lac Prt) LM0220 were induced for temperature phage by UV irradiation or mitomycin C. Four of the transductants, designated KB18, KB21, KB54, and KB58, yielded lysates demonstrating less than one Lac+ transductant per 0.2 ml of phage lysate. Successive transferring in the presence of acriflavine did not yield Lac segregants from KB18, KB21, KB54, or KB58, whereas Streptococcus lactis C2 (parent culture) and three other Lac+ transductants showed 12 to 88% conversion from Lac+ to Lac within 6 to 10 repetitive transfers. When grown in continuous culture, KB21 did not show any Lac variants in 168 h, while S. lactis C2 had 96% conversion from Lac+ to Lac in 144 h. Agarose gel electrophoresis of plasmid DNA isolated from KB18, KB21, KB54, and KB58 revealed that the lactose plasmid, pLM2103, normally present in Lac+ transductants, was missing. This suggested integration of the transferred lactose plasmid into the chromosome. In contrast to phage lysates induced from S. lactis C2, which exhibited an exponential decrease in the number of Lac+ transductants after exposure to small doses of UV irradiation, the transduction frequency for lactose metabolism was stimulated by UV irradiation of lysates from KB58. The latter indicated chromosomal linkage for lac and that integration of the lactose genes plasmid into the chromosome had occurred.  相似文献   

15.
The frequency of ultraviolet(UV)-induced mutations drops rapidly whenEscherichia coli Hcr+ cells (strains WP-2 Hcr+; B/r) are incubated on phosphate-buffered agar (PBA), but is reduced only slightly if chloroquine or quinacrine are incorporated into the medium. The excision-deficient WP-2 Hcr strain shows little reduction in the number of mutants when incubated on PBA. During postirradiation incubation on PBA, cell viability was relatively unaffected by the presence of the chemicals in the PBA (25 g/ml quinacrine; 50 g/ml chloroquine). When cells were given optimal doses of photoreactivating light, no further decline in mutations was obtained during subsequent incubation on PBA. Approximately 64% of the mutants seen when cells are treated with UV-PBA-chloroquine and 90% seen with UV-PBA-quinacrine can be repaired if cells are incubated on PBA. When these chemicals were added to the PBA, both excision-proficient strains (WP-2 Hcr+; B/r) demonstrated a marked reduction in the repair of UV-induced mutations to streptomycin resistance. Our results indicate that these chemicals interfere with the excision of UV-induced pyrimidine dimers, a process that normally occurs during postirradiation incubation on PBA.  相似文献   

16.
Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or “Accelerated Resistance to Multiple Drugs” (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring detrimental fitness costs.  相似文献   

17.
The effects of UV irradiation on DNA metabolism during meiosis have been examined in wild-type (RAD+) and mitotically defined excision-defective (rad1-1) strains of Saccharomyces cerevisiae that exhibit high levels of sporulation. The rad1-1 gene product is not required for normal meiosis: DNA synthesis, RNA synthesis, size of parental and newly synthesized DNA and sporulation are comparable in RAD+ and rad1-1 strains. Cells were UV irradiated at the beginning of meiosis, and the fate of UV-induced pyrimidine dimers as well as changes in DNA and DNA synthesis were followed during meiosis. Excision repair of pyrimidine dimers can occur during meiosis and the RAD1 gene product is required; alternate excision pathways do not exist. Although the rate of elongation is decreased, the presence of pyrimidine dimers during meiosis in the rad1-1 strain does not block meiotic DNA synthesis suggesting a bypass mechanism. The final size of DNA is about five times the distance between pyrimidine dimers after exposure to 4 J/m2. Since pyrimidine dimers induced in parental strands of rad1-1 prior to premeiotic DNA synthesis do not become associated with newly synthesized DNA, the mechanism for replicational bypass does not appear to involve a recombinational process. The absence of such association indicates that normal meiotic recombination is also suppressed by UV-induced damage in DNA; this result at the molecular level is supported by observations at the genetic level.  相似文献   

18.
Interaction of the exrA mutation with rec mutants of Escherichia coli K12   总被引:1,自引:0,他引:1  
Mutants of Escherichia coli K12 were constructed which carry the exrA mutation addition to the various recombination deficient mutations recA recB and recC. The double mutant containing the exrA recA genotype is found to be slightly more sensitive to UV irradiation at very low doses of UV but essentially is very similar to the exrA + recA at the high UV doses. The recombination deficiency, λ induction and DNA degradation of the exrA recA shows a slight increase in the defectiveness of each of these functions. The double mutants of exrA recB and exrA recC show an increase in UV sensitivity and recombination deficiency and λ induction. The DNA degradation following UV-irradiation of these mutants is more characteristic of the recB and recC mutant alone.These results give further support to the theory that exrA and lex are probably mutants within the same cistron and also suggest that exrA, lex and recA are involved in a common DNA repair pathway and that the gene products of all three functions are required to regulate recB+ and recC+ endonuclease induced DNA degradation.  相似文献   

19.
Three strains Salmonella typhimurium carrying frameshift mutations affecting the histidine genes (hisC3076, hisD3052 and hisC207) showed increased sensitivity to mutagenesis by ICR-191 (as judged by measuring back mutation to prototrophy), if they were made deficient in excision repair by deleting the uvrB gene. One frameshift strain, hisC3076, also showed increased sensitivity to mutagenesis by ICR-191 when it carried either of two different polA alleles, whereas the hidD305 and hisD207 frameshifts reduced sensitivity to mutagenesis in the presence of these alleles. Studies of spontaneous back mutation to prototrophy revealed siginificant mutator effects of the polA1 mutation on reversion of the hisD3052 frameshift and of the polA3 mutation on reversion of the hisC3076 frameshift. Other smaller mutator effects of the polA alleles on reversion of the his mutations may also be present. In an attempt to explain the complex interactions between different polA alleles and different frameshift mutations, it is tentatively suggested that deletion frameshift may arise mainly during DNA replication, while addition frameshifts may arise mainly during post-replication repair.  相似文献   

20.
The light-induced action of 8-methoxypsoralen (8-MOP) on λ phage and plasmids yields monoadducts and interstrand crosslinks. The survival and clear plaque mutation frequency in the phage photosensitized with 8-MOP and irradiated with UV at wavelength >320 nm are increased when the wild-type host (Escherichia coli uvr +) is subjected to UV irradiation (wavelength = 254 nm) prior to phage inoculation. These phenomena are known as “W reactivation” and “W mutagenesis.” It is shown that 8-MOP monoadducts in λ DNA induce clear mutations in the phage inoculated to UV-irradiated excision repair mutants of E. coli only when the error-prone repair is performed by MucA 2 B, but not PolV (UmuD 2 C) polymerase. The efficiency of the SOS repair (W reactivation) of 8-MOP monoadducts in plasmid and λ phage DNA also only increases with the presence of pKM101 plasmid muc + in E. coli uvr ?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号