共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the geranylgeranyl pyrophosphate synthetase activity was very low compared with farnesyl pyrophosphate synthetase activity on imbibition of pumpkin seed, the former increased markedly and the latter decreased as germination proceeded. 相似文献
2.
A cell-free system derived from seed embryos of barley (Hordeum vulgare cv. Zephyr) grain has been used to prepare substrate quantities of radioactively-labelled C5-C20 intermediates of terpenoid biosynthesis. The purification and characterization of high specific activity all-trans farnesyl-[4, 8, 12-3H] and all-trans geranylgeranyl-[4, 8, 12, 16-3H] pyrophosphates, suitable for use in studies of sterol and carotenoid biosynthesis, are described in detail. The effects of the plant growth retardant AMO 1618 on the system are reported. 相似文献
3.
Sandeep Kumar Tata Jihye Jung Yoon‐Ha Kim Jun Young Choi Ji‐Yul Jung In‐Jung Lee Jeong Sheop Shin Stephen Beungtae Ryu 《Plant biotechnology journal》2016,14(1):29-39
Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast‐targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS‐transgenic lines (control) or wild‐type plants. The gibberellin levels in HaGGPS‐transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS‐transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS‐expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy. 相似文献
4.
Ronald C. Coolbaugh Thomas C. Moore Susan A. Barlow Paul R. Ecklund 《Phytochemistry》1973,12(7):1613-1618
Soluble enzyme preparations from pea shoot tips incorporated mevalonic acid-2-14C into ent-kaurene-14C, squalene-14C and other products. The assay for either ent-kaurene or squalene is quite direct; both products can be obtained apparently free of radioactive contaminants by TLC on silica gel G in hexane. The enzyme system is dependent upon added ATP and Mn2+ or Mg2+, with Mn2+ being a more effective activator than Mg2+ under the experimental conditions. Reduced pyridine nucleotide had no effect on ent-kaurene production but stimulated squalene synthesis. The accumulation of both ent-kaurene and squalene was stimulated by dithiothreitol and carbon monoxide and was reduced by the addition of particulate cell components. AMO-1618 inhibited ent-kaurene production and had no effect on the synthesis of squalene. Enzyme extracts from shoot tips are much less active in ent-kaurene synthesis than extracts from the cotyledons of immature seeds on either a fresh weight or protein basis. 相似文献
5.
We report the X-ray crystallographic structures of the bisphosphonate N-[methyl(4-phenylbutyl)]-3-aminopropyl-1-hydroxy-1,1-bisphosphonate (BPH-210), a potent analog of pamidronate (Aredia), bound to farnesyl diphosphate synthase (FPPS) from Trypanosoma brucei as well as to geranylgeranyl diphosphate synthase from Saccharomyces cerevisiae. BPH-210 binds to FPPS, together with 3 Mg(2+), with its long, hydrophobic phenylbutyl side-chain being located in the same binding pocket that is occupied by allylic diphosphates and other bisphosphonates. Binding is overwhelmingly entropy driven, as determined by isothermal titration calorimetry. The structure is of interest since it explains the lack of potency of longer chain analogs against FPPS, since these would be expected to have a steric clash with an aromatic ring at the distal end of the binding site. Unlike shorter chain FPPS inhibitors, such as pamidronate, BPH-210 is also found to be a potent inhibitor of human geranylgeranyl diphosphate synthase. In this case, the bisphosphonate binds only to the GGPP product inhibitory site, with only 1 (chain A) or 0 (chain B) Mg(2+), and DeltaS is much smaller and DeltaH is approximately 6 k cal more negative than in the case of FPPS binding. Overall, these results are of general interest since they show that some bisphosphonates can bind to more than one trans-prenyl synthase enzyme which, in some cases, can be expected to enhance their overall activity in vitro and in vivo. 相似文献
6.
7.
8.
[3H]-Gibberellin A5 ([3H]-GA5) applied to seedlings of dark-grown dwarf pea (Pisum sativum L. cv. Meteor), was converted to two acidic compounds, GA3 and a chromatographically similar unknown. Identification of GA3 was made by gas-liquid radiochromatography using three stationary phases. 相似文献
9.
A sensitive, nonradioactive analytical method has been developed to simultaneously determine the concentrations of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) in cultured cells. Following extraction, enzyme assays involving recombinant farnesyl protein transferase or geranylgeranyl protein transferase I are performed to conjugate FPP or GGPP to dansylated peptides. The reaction products are then separated and quantified by high-performance liquid chromatography coupled to a fluorescence detector at the excitation wavelength 335 nm and the emission wavelength 528 nm. The retention times for farnesyl-peptide and geranylgeranyl-peptide are 8.4 and 16.9 min, respectively. The lower limit of detection is 5 pg of FPP or GGPP ( approximately 0.01 pmol). A linear response has been established over a range of 5-1000 pg ( approximately 0.01-2 pmol) with good reproducibility. The method has been used to determine the levels of FPP (0.125+/-0.010 pmol/10(6)cells) and GGPP (0.145+/-0.008 pmol/10(6)cells) in NIH3T3 cells. Furthermore, changes in FPP and GGPP levels following treatment of cells with isoprenoid biosynthetic pathway inhibitors were measured. This method is suitable for the determination of the concentrations of FPP and GGPP in any cell type or tissue. 相似文献
10.
(E,E)?[1?14C]Farnesyl phosphate and (E,E)?[1?14C]farnesyl pyrophosphate were both converted to abscisic acid by Cercospora rosicola resuspensions. (E,E)?[1?14C]Farnesol, (E,Z)?[1?14C]farnesol, (E,Z)?[1?14C]farnesyl pyrophosphate, (E,E)?[1?14C]farnesic acid, and (E,Z)?[1?14C]farnesic acid were not converted to abscisic acid by the fungus. These findings provide information on the sequence of the reactions involved in converting farnesyl pyrophosphate to abscisic acid. Specifically, they suggest that the transformations involving the three terminal carbons in the side chain occur after one or more changes elsewhere in the molecule. 相似文献
11.
Chris A. Helliwell James A. Sullivan Ruth M. Mould John C. Gray W. James Peacock Elizabeth S. Dennis 《The Plant journal : for cell and molecular biology》2001,28(2):201-208
We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid. 相似文献
12.
Sasaki D Fujihashi M Iwata Y Murakami M Yoshimura T Hemmi H Miki K 《Journal of molecular biology》2011,409(4):543-557
The crystal structure of geranylgeranyl reductase (GGR) from Sulfolobus acidocaldarius was determined in order to elucidate the molecular mechanism of the catalytic reaction. The enzyme is a flavoprotein and is involved in saturation of the double bonds on the isoprenoid moiety of archaeal membranes. The structure determined in this study belongs to the p-hydroxybenzoate hydroxylase family in the glutathione reductase superfamily. GGR functions as a monomer and is divided into the FAD-binding, catalytic and C-terminal domains. The catalytic domain has a large cavity surrounded by a characteristic YxWxFPx7-8GxG motif and by the isoalloxazine ring of an FAD molecule. The cavity holds a lipid molecule, which is probably derived from Escherichia coli cells used for over-expression. One of the two forms of the structure clarifies the presence of an anion pocket holding a pyrophosphate molecule, which might anchor the phosphate head of the natural ligands. Mutational analysis supports the suggestion that the three aromatic residues of the YxWxFPx7-8GxG motif hold the ligand in the appropriate position for reduction. Cys47, which is widely conserved in GGRs, is located at the si-side of the isoalloxazine ring of FAD and is shown by mutational analysis to be involved in catalysis. The catalytic cycle, including the FAD reducing factor binding site, is proposed on the basis of the detailed analysis of the structure. 相似文献
13.
14.
15.
Isolated bean (Phaseolus vulgaris) chloroplasts were used to investigate the mode of synthesis of transitory amylose and amylopectin from ADP-glucose. Pulse chase experiments showed that labelled glucose in amylose decreased when chased with cold substrate as compared to controls. A significant portion of this decrease appeared in the amylopectin fraction indicating that amylopectin was formed from amylose. However, time course experiments showed that the rate of amytopectin synthesis is higher than that of amylose at the early stages of incubation, suggesting a certain degree of independent synthesis of the two fractions. High concentration of citrate increased the rate of amylopectin synthesis. 相似文献
16.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn
gibberellin An
- GC-MS
combined gas chromatography-mass spectrometry
- HPLC
highperformance liquid chromatography
- MVA
mevalonic acid
- S-2
2000-g supernatant 相似文献
17.
Zhengwei Li Jiefang Zhang Min Wang Fuyu Qiu Chongyin Jin Guosheng Fu 《Cell biology international》2021,45(7):1393-1403
Farnesyl pyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are involved in diabetic cardiomyopathy. This study investigated the specific role of FPPS in the development of diabetic cardiomyopathy. We demonstrated that FPPS expression was elevated in both in vivo and in vitro models of diabetic cardiomyopathy. FPPS inhibition decreased the expression of proteins related to cardiac fibrosis and cardiomyocytic hypertrophy, including collagen I, collagen III, connective tissue growth factor, natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Furthermore, FPPS inhibition and knockdown prevented phosphorylated c-Jun N-terminal kinase 1/2 (JNK1/2) activation in vitro. In addition, a JNK1/2 inhibitor downregulated high-glucose-induced responses to diabetic cardiomyopathy. Finally, immunofluorescence revealed that cardiomyocytic size was elevated by high glucose and was decreased by zoledronate, small-interfering farnesyl pyrophosphate synthase (siFPPS), and a JNK1/2 inhibitor. Taken together, our findings indicate that FPPS and JNK1/2 may be part of a signaling pathway that plays an important role in diabetic cardiomyopathy. 相似文献
18.
A protein fraction capable of catalysing the formation of all four geometrical isomers of farnesyl pyrophosphate has been isolated from cotton roots. Using neryl pyrophosphate and isopentenyl pyrophosphate as substrates the product was found to be cis-cis farnesyl pyrophosphate and possibly trans-cis farnesyl pyrophosphate. Geranyl pyrophosphate and isopentenyl pyrophosphate as substrates yielded trans-trans and possible cis-trans farnesyl pyrophosphate. During purification of the active protein fraction, the ratio of utilization of geranyl pyrophosphate and neryl pyrophosphate did not remain constant, indicating that two enzymes may be involved, one specific for cis C10-substrate and the other for trans C10-substrate. 相似文献
19.
T. T. Baba Y. Ohara‐Nemoto T. Miyazaki T. K. Nemoto 《Cell biochemistry and function》2013,31(8):652-659
Simvastatin suppresses myoblast differentiation via inhibition of Rac GTPase, which is involved in the mevalonic acid pathway that produces cholesterol. Statins also inhibit adipogenic differentiation and receptor activator of NFκB ligand (RANKL) expression, possibly through the mevalonic acid pathway, although the involvement of that pathway and effector proteins in these cellular events has not been fully clarified. In the present study, we aimed to elucidate the mechanism of the effects of simvastatin on adipogenic differentiation and calcitriol‐induced RANKL expression in bone marrow stromal ST2 cells. Adipogenesis and mRNA up‐regulation of peroxisome proliferator–activated receptor γ and adipocyte fatty acid–binding protein were induced by troglitazone, and those events were efficiently inhibited by simvastatin. In addition, RANKL expression induced by calcitriol was abrogated by simvastatin in ST2 cells. The inhibitory effects of simvastatin were adequately compensated by the addition of either mevalonic acid or an intermediate of the mevalonic acid pathway, geranylgeranyl pyrophosphate, but not by another intermediate, farnesyl pyrophosphate. These findings suggest that protein geranylgeranylation is related to cellular differentiation in those two directions. Furthermore, inhibitor analysis demonstrated that Rac GTPase is involved in adipogenic differentiation, whereas Rho GTPase was found to be involved in RANKL expression. Taken together, the present findings suggest that geranylgeranylation of Rho family GTPase is involved in both adipogenesis and RANKL expression of stromal cells, while Rac GTPase is involved in adipogenesis and Rho GTPase in RANKL expression. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
Hojo M Toga K Watanabe D Yamamoto T Maekawa K 《Archives of insect biochemistry and physiology》2011,77(1):17-31
Defensive strategies of termite soldiers are roughly classified as either mechanical, using mandibles and/or the whole head, or chemical, using frontal gland secretion. Soldiers of the genus Nasutitermes (Termitidae, Nasutitermitinae), which is one of the most derived termite genera, use only chemical defenses, and diterpene defensive secretions were suggested to be synthesized through geranylgeranyl diphosphate (GGPP). On the other hand, soldiers of the genus Reticulitermes (Rhinotermitidae, Heterotermitinae) mainly use mechanical defenses, but also use supplementary chemical defenses involving frontal gland secretions, including diterpene alcohol. In this study, to confirm whether the GGPP is used for diterpene synthesis in a representative of an earlier-branching termite lineage, the GGPP synthase gene (RsGGPPS) was identified in the rhinotermitid Reticulitermes speratus (Kolbe). The relative expression level of RsGGPPS in soldiers was three-fold higher than in workers. Furthermore, RsGGPPS gene expression was detected in epithelial class 1 gland cells around the frontal-gland reservoir. Although GGPP is used for various essential cellular roles in animals, RsGGPPS is suggested to be used not only for these essential roles but also for diterpene synthesis in order to produce defensive secretions. Chemical structures of the diterpene identified from Reticulitermes and Nasutitermes are extremely different from each other, and the two genera are phylogenetically distant from each other. Thus, these two lineages may have independently acquired the abilities of diterpene synthesis from GGPP. 相似文献