首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of spontaneous lethal mutations in inbred strains is discussed with special reference to their variation and influence on estimates to induced mutations.A model is presented that will facilitate classification of lethal-free and lethal heterozygotes.The model is used in classification of sons to lethal heterozygous males carrying a spontaneous mutation.The observed results are in good agreement with the model.From experience it is concluded that the most efficient way to use the facilities in lethal tests is to examine 10 or more full brothers to the P parents. By doing so pre-existing spontaneous lethals can be excludde by eliminating families in which any of the P parents were lethal heterozygous. The observed total rate of recessive lethals gives slight over-estimation of the induced rate of mutations, as spontaneous mutations in the gametes forming the F1 cannot be excluded.  相似文献   

2.
Spontaneous mutations were accumulated for 40 generations in 140 unrelated second chromosomes with the standard gene arrangement. These were extracted from the same population by using the marked inversion technique, and the following findings were obtained: (1) In 42 out of the 140 chromosome lines, chromosome aberrations were detected by examining the salivary gland chromosomes: 40 paracentric and 15 pericentric inversions, 2 reciprocal translocations between the second and the third chromosomes, and 6 transpositions. (2) In 63 out of the 90 originally lethal-free lines, recessive lethal mutations occurred. (3) There were only 3 lines that acquired chromosome aberrations (inversions) with no lethal effects in the homozygous condition. (4) In a comparison of these results with those of the (CH), (PQ), and (RT) chromosomes in which no chromosome aberrations occurred after accumulating mutations for 22058 chromosome.generations (Yamaguchi and Mukai 1974), it was concluded that some of these 140 chromosomes carried a kind of mutator. (5) The frequency of mutator-carrying chromosome lines was estimated to be 0.66 on the basis of the distribution of the break-points on the chromosome lines and the frequency of lines that acquired neither recessive lethal mutations nor chromosome aberrations. Thus, the average number of breaks per mutator-carrying chromosome was estimated to be about 0.19/generation.On the basis of these estimates, the nature of the mutator factor was discussed.  相似文献   

3.
Ohmi Ohnishi 《Genetics》1977,87(3):529-545
Polygenic mutations affecting viability were accumulated on the second chromosome of Drosophila melanogaster by treating flies with EMS in successive generations. The treated chromosomes were later made homozygous and tested for their effects on viability by comparison of the frequency of such homozygotes with that of other genotypes in the same culture. The treated wild-type chromosomes were kept heterozygous in Pm/+ males by mating individual males in successive generations to Cy/Pm females. The number of generations of accumulation was 1 to 30 generations, depending on the concentration of EMS. A similar experiment for spontaneous polygenic mutations was also conducted by accumulating mutations for 40 generations. The lower limit of the spontaneous mutation rate of viability polygenes is estimated to be 0.06 per second chromosome per generation, which is about 12 times as high as the spontaneous recessive lethal mutation rate, 0.005. EMS-induced polygenic mutations increase linearly with the number of treated generations and with the concentration of EMS. The minimum mutation rate of viability polygenes is about 0.017 per 10(-4)m, which is only slightly larger than the lethal rate of 0.013 per 10(-4) m. The maximum estimate of the viability reduction of a single mutant is about 6 to 10 percent of the normal viability. The data are consistent with a constant average effect per mutant at all concentrations, but this is about three times as high as that for spontaneous mutants. It is obvious that one can obtain only a lower limit for the mutation rate, since some mutants may have effects so near to zero that they cannot be detected. The possibility of measuring something other than the lower limit is discussed. The ratio of the load due to detrimental mutants to that caused by lethals, the D/L ratio, is about 0.2 to 0.3 for EMS-induced mutants, as compared to about 0.5 for spontaneous mutants. This is to be expected if EMS treatment produces a large fraction of small deletions and other chromosome rearrangements which are more likely to be lethal.  相似文献   

4.
The frequency of recessive lethal mutations and reciprocal translocations was investigated in spermatogonia of CBA male mice which were thrice gamma-irradiated at doses of 300 r with 28 days intervals. The rate of induced recessive lethals was estimated 1) by comparison of embryos survival between the irradiated and control groups in mating of the F1 males with their daughters, and 2) by estimation the frequency of males heterozygotes for recessive lethals in the first generation. In the first case the frequency of recessive lethals was 2,8 +/- 0,8-10(-4) per r per gamete (for the pre- and post-implantation death) and 1,6 +/- 0,1-10(-4) per r per gamete (for the pre- and post-implantation death) and 1,6 +/- 0,1-10(-4) per r per gamete in the second case. The frequency of heterozygotes for reciprocal translocations in the first generations of males was 3,1 +/- 0,9-10(-5) per r per gamete.  相似文献   

5.
E R Varebtsova 《Genetika》1984,20(10):1628-1632
The effect of material repair on induction of paternal mutations was tested with radiosensitive rad(2)201G1 mutant. Basc males were irradiated at doses from 0 to 60 Gy of gamma-rays and mated to the radiosensitive mutant or control females. Frequencies of sex-linked recessive lethals and dominant lethals (induced in the paternal genome) were determined. With control females, the rate of recessive lethals increased linearly from 0 to 60 Gy. With rad(2)201G1 mutant, an increase in spontaneous and induced rates of paternal dominant lethals was observed; the rate of sex-linked recessive lethals increased non-linearly from 0 to 60 Gy.  相似文献   

6.
Mary L. Alexander 《Genetics》1975,81(3):493-500
The mutation rate was determined for mature sperm at eight specific gene loci on the third chromosome of Drosophila melanogaster using the low ion density radiations of 22 Mev betatron X-rays. A dose of 3000 rads of betatron X-rays produced a mutation rate of 4.36 x 10-8 per rad/locus. Among the mutations observed, 66% were recessive lethals and 34% viable when homozygous. Only one of the 24 viable mutations was associated with a chromosome aberration. Among the 47 recessive lethals, no two-break aberrations were detected in 48.9% of the lethals, deletions were associated with 42.2%, inversions with 6.7% and translocations with 2.2%.—When these genetic results are compared to those for 250 KV X-rays, the mutation rate for betatron treatments was slightly lower (.76), the recessive lethal rate among induced mutations was higher, and the chromosome aberrations among lethal mutations were slightly lower than with 250 KV X-rays. Although the two types of irradiations differ by an ion density of approximately ten, the amount and types of inheritable genetic damage induced by the two radiations in mature sperm were not significantly different.  相似文献   

7.
The effects of inbreeding on human health depend critically on the number and severity of recessive, deleterious mutations carried by individuals. In humans, existing estimates of these quantities are based on comparisons between consanguineous and nonconsanguineous couples, an approach that confounds socioeconomic and genetic effects of inbreeding. To overcome this limitation, we focused on a founder population that practices a communal lifestyle, for which there is almost complete Mendelian disease ascertainment and a known pedigree. Focusing on recessive lethal diseases and simulating allele transmissions, we estimated that each haploid set of human autosomes carries on average 0.29 (95% credible interval [0.10, 0.84]) recessive alleles that lead to complete sterility or death by reproductive age when homozygous. Comparison to existing estimates in humans suggests that a substantial fraction of the total burden imposed by recessive deleterious variants is due to single mutations that lead to sterility or death between birth and reproductive age. In turn, comparison to estimates from other eukaryotes points to a surprising constancy of the average number of recessive lethal mutations across organisms with markedly different genome sizes.  相似文献   

8.
Adult male mice were given gonadal doses of 0–1200 rad acute X-irradiation and mated the same day. 531 sons, conceived within a week of the treatment, were tested for fertility and their testes examined cytologically for chromosome aberrations in spermatocytes. 5557 of those diagnosed as semi-sterile and 3540 of those diagnosed as sterile were judged to be heterozygous for one or more reciprocal translocations. Numbers of 0, 1, 2… translocations per mouse showed a good fit to a Poisson distribution, in contrast to previous findings with spermatogonial irradiation. Although the dose response fitted a linear relationship, the power law equation of best fit had a dose-exponent of 1.41. Further analysis along similar lines to those used previously in Drosophila by Catcheside, Lea and Haldane, which assumed random rejoining of breaks and direct proportionality between dosage and number of breaks, gave a close fit between the actural results and those expected if αq = 2.8·103?/rad, where α is the mean number of breaks per nucleus and q is the proportion which rejoin or restitute. By combining these data with those for litter-size reduction in F1 (taken as a measure of induced dominant lethality) α was estimated to be 3.4 × 10?3 per rad. When compared with the value of 0.8 × 10?3 per rad obtained in Drosophila by Haldane and Lea, this suggested that mouse haploid nuclei are more radiosensitive to chromosome breakage than Drosophila haploid nuclei by a factor of about 4. The mean number of implants per pregnant female mated to cytologically abnormal males was about 15% lower than with normal males. This pre-implantation loss was thought to be mainly the result of a reduction in the rate of fertilization in this group rather than to early death of unbalanced zygotes. There was no evidence for the induction of any undetected types of chromosomal aberration or gene mutation which could cause intrauterine death in the progeny of F1 males.  相似文献   

9.
The evaluation of genetic radiation hazards in man is an ongoing scientific enterprise from about the mid-1950s. Since estimates of genetic risks are essential for providing a basis for protecting our genetical endowment and since strictly relevant human data are limited, there is no alternative at present but to use the data from mouse and certain non-human primates. This paper reviews the general principles and methods that have thus far been used, appraises the evolution of the conceptual framework, the data base and the assumptions involved, presents current estimates of genetic risks and provides some perspective of the advances that are likely to be made in the near future. Currently, risk estimates are made using the so-called “direct method” and the “doubling dose method”. Both these methods involve a number of assumptions and consequent uncertainties. With the direct method, it is now estimated that following low LET, low dose-rate or low-dose irradiation of males, there will be (i) about 10–20 cases of affected children per million births per rad of exposure, who will suffer from the effects of induced mutations having dominant effects and (ii) about 1 to 10 cases of congenitally malformed children (again per million births per rad), a consequence of the induction of reciprocal translocations. For irradiation of females under similar conditions, the estimated risks are 0–9 and 0–3 affected children per million births per rad, these being the consequence of induction of dominant mutations and of reciprocal translocations, respectively. The doubling dose method is used to estimate risks to a population under continuous irradiation. If the population is exposed to low LET irradiation at a rate of 1 rad/generation (1 generation = 30 years), the expected total increments in the frequencies of genetic diseases are about 20 cases per million births in the first generation and about 150 cases per million births at equilibrium. These expected increments are very small fractions of the spontaneous prevalence of genetic and partially genetic disorders, currently estimated to be about 10.6 %.  相似文献   

10.
The purpose of this investigation was to determine whether there exists a correlation in Drosophila between the spontaneous mutation rate and the amount of dispersed middle repetitive (mobile) DNA sequences. The amount of these sequences is 7 times less in Drosophila simulans as compared to Drosophila melanogaster. Therefore, if a correlation exists, the spontaneous mutation rate in Drosophila simulans should be 7 times lower than that in Drosophila melanogaster. We isolated an X-chromosome inversion after X-irradiation of wild-type Drosophila simulans males, that reduced crossing-over between white and forked, two X-linked visible markers, to less than 1%. This inversion was subsequently used to determine the sex-linked recessive lethal mutation rate in Drosophila simulans males of a laboratory strain marked with white. The frequency of these lethal mutations found is not different from that observed in Drosophila melanogaster males of laboratory strains.  相似文献   

11.
Female CBA mice were chronically gamma-irradiated in utero during either of two periods, the 10th to 14th days or the 14th to 18th days of gestation. The doses administered were 34 rad/generation in the earlier group and 160 rad/generation in the latter with dose rates of 0.3 rad/h and 1.7 rad/h, respectively. The doses were given through 9 generations. The effect of the irradiation was expressed as an increased frequency in the rate of recessive lethal equivalents by just above 4%. This corresponds to a mutation rate of 1.5 X 10(-4) mutation/rad/genome in the animals irradiated during the 10th to 14th gestational days and 0.3 X 10(-4) mutation/rad/genome in the 14th to 18th day group. As in earlier investigations, neither dominant mutations nor dominance effects of induced recessive lethal equivalents were found.  相似文献   

12.
Two hundred second chromosomes were extracted from a Japanese population in October of 1972, and the viabilities and productivities of homozygotes and heterozygotes from them were examined. Viability was measured by the Cy method and productivity by the number of progeny produced per female. The frequency of lethal-carrying chromosomes was 0.315. When the average heterozygote viability was standardized as 1.000, the average homozygote viability was 0.595 including the lethal lines, and 0.866 excluding them. The frequency of recessive sterile chromosomes among 131 non-lethal lines was 0.092 in females and 0.183 in males. There were two instances in which homozygosis for the second chromosome caused sterility in both sexes, which was close to the number expected (2.2) on a random basis of 0.092 x 0.183 x 131. When the average heterozygote productivity of 200 lines was standardized as 1.000, the average homozygote productivity was 0.532 including female steriles, and 0.584 excluding them. The ratio of detrimental load to lethal load was 0.383, while the ratio of partial sterility load to complete sterility load was 5.767. The average viability of lethal heterozygotes was slightly, but not significantly, lower than that of lethal-free heterozygotes, while the average productivity of lethal heterozygotes was significantly lower than that of lethal-free heterozygotes. There was a significant association of sterility in either sex with low viability of homozygotes. However, no statistically significant differences in viability and productivity were detected between sterile heterozygotes and non-sterile heterozygotes. The heterozygous effects of viability and productivity polygenes were examined by regressions of the heterozygotes on the sum of corresponding homozygotes. The regression coefficients were slightly positive for both viability and productivity if lethal and sterile chromosomes were excluded. The correlation between viability and productivity in homozygotes was significantly positive when sterile chromosomes were included, but the significance disappeared when the sterile chromosomes were excluded. In the heterozygotes there were no detectable correlations between them.  相似文献   

13.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

14.
This paper reviews data on the nature of spontaneous and radiation-induced mutations in the mouse. The data are from studies using a variety of endpoints scorable at the morphological or the biochemical level and include pre-selected as well as unselected loci at which mutations can lead to recessive or dominant phenotypes. The loci used in the morphological recessive specific-locus tests permit the recovery of a wide spectrum of induced changes. Important variables that affect the nature of radiation-induced mutations (assessed primarily using tests for viability of homozygotes) include: germ cell stage, type of irradiation and the locus. Most of the results pertain to irradiated stem cell spermatogonia. The data on morphological specific-locus mutations show that overall, more than two-thirds of the X- or gamma-ray-induced mutations are lethal when homozygous. This proportion may be lower for those that occur spontaneously, but the numbers of tested mutants are small. For spontaneous mutations, there is evidence for the occurrence of mosaics and for proviral insertions. Most or all tested induced enzyme activity variants, dominant visibles (recovered in specific-locus experiments) and dominant skeletal mutations are lethal when homozygous and this is true of 50% of dominant cataract mutations, but again, the numbers of tested mutants are small. Electrophoretic mobility variants, which are known to be due to base-pair changes, are seldom induced by irradiation. At the histocompatibility loci, no radiation-induced mutations have been recovered, presumably because deletions are incompatible with survival even in heterozygotes. All these findings are consistent with the view that in mouse germ cells, most radiation-induced mutations are DNA deletions. Some mutations (in the morphological specific-locus tests) which had previously been inferred to be deletions on the basis of genetic analyses have now been shown to be DNA deletions by molecular methods. However, the possibility cannot be excluded that at least a small proportion of induced mutations may be intragenic changes. The data on the rates of induction of recessive lethals and of dominant skeletal and dominant cataract mutations (and proportions of the latter two which are homozygous lethal) can be used to estimate the proportions of recessive lethals which are expressed as skeletal abnormalities or cataracts. These calculations show that about 10% of recessive lethals manifest themselves as skeletal and less than 0.2% as cataract mutations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The genetic effects of one generation of spermatogonial X-irradiation in rats, by a single dose of 600r in one experiment and by a fractionated dose of 450r in another, were measured in three generations of their descendants. Estimates of dominant lethal mutation rates—(2 to 3) x 10 -4/gamete/r—from litter size differences between irradiated and nonirradiated stock were consistent with previous estimates from rats and mice. Similar consistency was found for estimates of sex-linked recessive mutation rates—(1 to 2) x 10-4 chromosome/r—from male proportions within strains; however, when measured in crossbreds the proportion of males was higher in the irradiated than in the nonirradiated lines. This inconsistency in results is in keeping with the contradictory results reported for recessive sex-linked lethal mutation rates in mice. The effects used to estimate recessive lethal mutation rates which were unusually high—(2 to 14) x 10-4/gamete/r—were not significant. Other factors that could have contributed to the observed effects are postulated.  相似文献   

16.
This paper provides an overview of the concept of doubling dose, changes in the database employed for calculating it over the past 30 years and recent advances in this area. The doubling dose is estimated as a ratio of the average rates of spontaneous and induced mutations in a defined set of genes. The reciprocal of the doubling dose is the relative mutation risk per unit dose and is one of the quantities used in estimating genetic risks of radiation exposures. Most of the doubling dose estimates used thus far have been based on mouse data on spontaneous and induced rates of mutations. Initially restricted to mutations in defined genes (with particular focus on the seven genes at which induced recessive mutations were studied in different laboratories), the doubling dose concept was subsequently expanded to include other endpoints of genetic damage. At least during the past 20 years, the magnitude of the doubling dose has remained unchanged at approximately 1 Gy for chronic low LET radiation exposures.One of the assumptions underlying the use of the doubling dose based on mouse data for predicting genetic risks in humans, namely, that the spontaneous rates of mutations in mouse and human genes are similar, is incorrect; this is because of the fact that, unlike in the mouse, the mutation rate in humans differs between the two sexes (being higher in males than in females) and increases with paternal age. Further, an additional source of uncertainty in spontaneous mutation rate estimates in mice has been uncovered. This is related to the non-inclusion of mutations which arise as germinal mosaics and which result in clusters of identical mutations in the following generation. In view of these reasons, it is suggested that a prudent way forward is to revert to the use of human data on spontaneous mutation rates and mouse data on induced mutation rates for doubling dose calculations as was first done in the 1972 BEIR report of the US National Academy of Sciences. The advantages of this procedure are the following: (i) estimates of spontaneous mutation rates in humans, which are usually presented as sex-averaged rates, automatically include sex differences and paternal age-effects; (ii) since human geneticists count all mutations that arise anew irrespective of whether they are part of a cluster or not, had clusters occurred, they would have been included in mutation rate calculations and (iii) one stays close to the aim of risk estimation, namely, estimation of the risk of genetic diseases in humans.On the basis of detailed analyses of the pertinent data, it is now estimated that the average spontaneous mutation rate of human genes (n=135 genes) is: (2.95+/-0.64)x10(-6) per gene and the average induced mutation rate of mouse genes (n=34) is: (0.36+/-0.10)x10(-5) per gene per Gy for chronic low LET radiation. The resultant doubling dose is (0.82+/-0.29) Gy. The standard error of the doubling dose estimate incorporates sampling variability across loci for estimates of spontaneous and induced mutation rates as well as variability in induced mutation rates in individual mouse experiments on radiation-induced mutations. We suggest the use of a rounded doubling dose value of 1 Gy for estimating genetic risks of radiation. Although this value is the same as that used previously, its conceptual basis is different and the present estimate is based on more extensive data than has so far been the case.  相似文献   

17.
Sex-linked recessive lethal mutations were induced in Drosophila melanogaster males by gaseous 1,2-dibromoethane at concentrations ranging from 0.2 to 2 parts per million. Significant numbers of mutations could be induced at all these concentrations. Pronounced germ-cell sensitivity differences were observed. For low exposures, spermatids and spermatocytes were about 10--20 times more sensitive than spermatozoa. The dose-effect relation was linear below 60 ppm . h for the 3 cell types. At higher exposures, sterility prevented mutation detection in spermatocytes and in spermatogonia. The lowest effective exposure for spermatozoa was 18 ppm . h (0.25 ppm for 72 h). In spermatids, the lowest exposure tested, 2.3 ppm . h (0.2 ppm for 11 h) induced 4 times the spontaneous mutation rate. Therefore, using prolonged exposure periods one may be able to detect concentrations in the range of parts per billion. Thus, Drosophila appears suitable as a system for detecting very low concentrations of gaseous mutagens in industrial, agricultural and environmental atmospheres.  相似文献   

18.
R Voss  R Falk 《Mutation research》1973,20(2):221-234
A selection system for the screening of reversions has been constructed and used to test reversions of lethals located in the proximal region of the X chromosome of Drosophila and of Kpn mutations.Spontaneous and induced reversions have been screened, X-rays and ethyl methanesulphonate (EMS) being the mutagens used in the induction experiments.No genuine back-mutation was found in 6·105 gametes scored. Sterile reversions of all four lethals tested were obtained. Their frequency suggested that at least in three of the lethals the sterile reversions represented “escapers” of the lethal effect rather than true revertants.Three fertile reversions of lx4 were found and analyzed. All three were autosomal suppressors, located on the second chromosome, allelic to each other, dominant in males and recessive in females.One fertile reversion of l3DES was found to be an X-linked suppressor. It is suggested that this suppressor is a Y-suppressed lethal, showing a V-type position effect, resulting from an aberration included in the proximal heterochromatin of the X chromosome.Reversions of Kpn were obtained at a similar rate to that found in previous reports22.The absence of true back-mutants in our experiments, in contrast to findings in previous reports, is discussed. From the existing literature on spontaneous and induced back-mutations in Drosophila melanogaster it appears that for several mutations the rates of forward and back-mutation are of the same order of magnitude. It is suggested that reported cases of back-mutations represent mainly inter- and intrachromosomal recombination in duplicated regions rather than mutational events and that the frequency of true back-mutation in Drosophila is usually of an order of magnitude, similar to that known for microorganisms and fungi.  相似文献   

19.
Partial asexual reproduction was introduced into a model of inbreeding depression due to nearly recessive lethal mutations in a partially selfing population. The frequencies of asexuality, selfing, and outcrossing were either constant or occurred in cycles of a single sexual generation followed by one or more asexual generations. We found that increasing the degree of asexuality generally increases the inbreeding depression maintained in an equilibrium population with a given selfing rate. This is due to the increase in the number of mutations relative to sexual generations during which selfing-induced purging of mutations may take place. For very high genomic mutation rates, sufficient to produce a threshold rate of self-fertilization for purging recessive lethal mutations, asexuality can have the opposite effect, decreasing equilibrium inbreeding depression, because of an increase in the efficiency of selection against mutations in heterozygotes with asexuality.  相似文献   

20.
J. B. S. Haldane (Amer. Nat. 71, 337–349, 1937) argued that, in equilibrium populations, the effect of deleterious mutation on average fitness depends primarily on the mutation rate and is independent of the severity of the mutations. Specifically, the equilibrium population fitness is e−μH, where μH is the haploid genomic mutation rate. Here we extend Haldane's result to a variety of reproductive systems. Using an analysis based on the frequency of classes of individuals with a specified number of mutations, we show that Haldane's principle holds exactly for haploid sex, haploid apomixis, and facultative haploid sex. In the cases of diploid automixis with terminal fusion, diploid automixis with central fusion, and diploid selfing, Haldane's principle holds exactly for recessive mutations and approximately for mutations with some heterozygous effect. In the cases of K-ploid apomixis, diploid endomitosis, and haplodiploidy, we show that Haldane's principle holds exactly for recessive lethal mutations. In addition we extend Haldane's result to various mixtures of the above-mentioned reproductive systems. In the case of diploid out-crossing sexuals, we do not obtain an exact analytic result, but present arguments and computer simulations which show that Haldane's result extends to this case as well in the limit as the number of loci becomes large. Although diverse reproductive systems are equally fit at equilibrium, different reproductive systems harbor vastly different numbers of recessive genes at equilibrium and we provide estimates of these numbers. These different numbers of mutations may create transient selective pressures on individuals with reproductive systems different from that of the equilibrium population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号