首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In lead poisoning porphobilinogen (PBG) excretion may be increased. Presently, there is no explanation for this effect of lead. These studies show that lead inhibits erythrocytic uroporphyrinogen (URO) 1 synthetase activity in hemolysate preparations but has little effect on the hepatic enzyme. Lead chloride concentrations as low as 5 × 10?6 M produced a significant inhibition of activity in human hemolysates, and 10?4 M lead chloride produced 92 and 58% inhibition of URO 1 synthetase activity in human and rat hemolysates, respectively. However, lead chloride in concentrations up to 10?4 M was unable to effect appreciable inhibition of activity in rat or human liver preparations. These results suggest that the source of PBG excretion following lead poisoning may be from erythropoietic tissue.  相似文献   

2.
(1) Subcutaneous or intra-abdominal injections of 8 mg of HgCl2/100 g body weight markedly depressed hepatic fatty acid synthetase activity of chicks at 1 h post-injection. The depression occurred despite the fact that the chicks continued to eat up until the time they were killed. Under these same conditions, the hepatic activity of acetyl-CoA carboxylase (EC 6.4.1.2) was not affected by HgCl2, while the activity of the mitochondrial system of fatty acid elongation was stimulated. (2) When 2-mercaptoethanol was included in the incubation medium for a highly purified preparation of fatty acid synthetase, 500 muM HgCl2 was required to show definite inhibition of the enzyme. When 2-mercaptoethanol was omitted, 50 muM HgCl2 was inhibitory and 100 muM HgCl2 abolished enzyme activity. (3) 2 mM dithiothreitol completely protected the purified fatty acid synthetase preparation from inhibition by 100 muM HgCl2. When dithiothreitol was added after the addition of enzyme to the mercury-containing medium, protection of the enzyme was not complete. (4) Dialysis of cytosol fractions from chicks injected with HgCl2 against 500 vol. of 0.2 M potassium phosphate buffer (pH 7.0) containing 1 mM EDTA and 10 mM dithiothreitol for 4 h at 4 degrees stimulated the fatty acid synthetase activity of the fractions. Dialysis of cytosol fractions from noninjected chicks under the same conditions was without effect on fatty acid synthetase activity. (5) These data support the hypothesis that the inhibitory effect of HgCl2 administered in vivo on hepatic fatty acid synthetase activity in chicks is mediated through the interaction of mercury with the sulfhydryl groups of the enzyme.  相似文献   

3.
The effect of calcitonin (CT) on fatty acid synthetase activity in the hepatic cytosol was investigated after a single subcutaneous administration of the hormone to fed rats. Administration of CT (synthetic [Asu1,7] eel CT; 80 MRC mU/100 g body weight) produced significant increases in fatty acid synthetase activity and calcium concentration in the hepatic cytosol of intact and thyroparathyroidectomized rats. The hormonal effect on the enzyme activity was not observed in rats fasted for 24 h. The increase in fatty acid synthetase activity by CT administration was completely inhibited by treatment with 10 microM EGTA. This enzyme activity was restored by addition of calcium ion (2.5-10 microM). The increased enzyme activity of CT-treated rats was markedly reduced by addition of W-7 (15 microM), a calmodulin inhibitor, in the enzyme assay system. Moreover, the cytosolic enzyme activity of normal rat liver was markedly raised by in vitro addition of both calcium ion (5 microM) and calmodulin (2.5 micrograms). These results suggest that CT increases fatty acid synthetase activity in the hepatic cytosol of fed rats, and that this hormonal regulation may depend on calmodulin, and be mediated through raised calcium in the cytosol.  相似文献   

4.
Studies were carried out to determine the effects of lung and liver cytosol on pulmonary and hepatic mierosomal lipid peroxidation, to determine the cytosolic concentrations of various substances which affect lipid peroxidation, and to determine which of these substances is responsible for the effects of the cytosol on lipid peroxidation. Lung cytosol inhibits both enzymatic (NADPH-induced) and nonenzymatic (Fe2+-induced) lung microsomal lipid peroxidation. In contrast, liver cytosol stimulates lipid peroxidation in hepatic microsomes during incubation alone, enhances Fe2+-stimulated lipid peroxidation, and has no effect on the NADPH-induced response. Substances which are known to be involved in inhibition of lipid peroxidation, including glutathione, glutathione reductase, glutathione peroxidase, and superoxide dismutase, are found in greater concentrations in liver cytosol than in lung cytosol. However, ascorbate is found in approximately equal concentrations in pulmonary and hepatic cytosol. Most of the effects of the cytosol on lipid peroxidation seem to be due to ascorbate and glutathione. For example, ascorbate, in concentrations found in lung cytosol, inhibits lung microsomal lipid peroxidation to about the same extent as the cytosol. The effects of liver cytosol on hepatic microsomal lipid peroxidation can be duplicated by concentrations of ascorbate and glutathione normally found in the cytosol; i.e., ascorbate stimulates and glutathione inhibits lipid peroxidation with the net effect being similar to that of liver cytosol. The results indicate that ascorbate has opposite effects on pulmonary and hepatic microsomal lipid peroxidation and suggest that ascorbate plays a major role in protecting pulmonary tissue against the harmful effects of lipid peroxidation.  相似文献   

5.
Phosphatidylcholine (PC) transfer activity was found in human erythrocyte hemolysate. The transfer activity was assayed by the ESR peak height increase when spin-labeled PC vesicles were incubated with egg yolk PC vesicles. The transfer activity was isolated from hemoglobin by an ion exchange chromatography followed by gel filtration. The partial purification resulted in a 405-fold increase in the specific transfer activity compared with that of the hemolysate. The molecular weight of the PC transfer protein was estimated to be 23,000 by gel filtration. The transfer activity was inactivated by heat-treatment at 75 degrees C for 10 min. Phosphatidylserine vesicles strongly inhibited the activity. Half-maximal inhibition occurred on addition of 0.24 mol% of phosphatidylserine vesicles to the incubation mixture. Ca2+ restored the activity. The transfer protein was quite similar to the PC transfer protein obtained from bovine liver cytosol.  相似文献   

6.
7.
We found that the cytosol of rat peritoneal polymorphonuclear neutrophils contains factor(s) that can stabilize an unstable enzyme, nitric oxide synthetase, in the cytosol. This enzyme has been purified to a single protein from the cytosol. Its half-life was 3 hours at 4 degrees C and was prolonged to greater than 24 hours by the stabilizing factor in the cytosol. The molecular weight of the stabilizing factor was greater than 100,000. Its activity was lost by the treatment with heating or alkali for 1 min or with acid for 5 min. It did not adhere to the carboxymethyl or diethylaminoethyl column at neutral pH. This stabilizing factor(s) may play a role in the regulation of the nitric oxide synthetase.  相似文献   

8.
The synthesis and biological evaluation of a new UDP-GlcNAc competitor (I), designed to mimic the transition state of the sugar donor in the enzymatic reaction catalysed by chitin synthetase, is described. Compound (I) was found to competitively inhibit chitin synthetase from Saccharomyces cerevisiae with respect to UDP-GlcNAc, but displayed minimal antifungal activity.  相似文献   

9.
The activities of two enzymes mediating different pathways of ornithine catabolism were measured in liver and kidney of chronically uremic rats and their pair-fed controls. Two months following partial nephrectomy hepatic ornithine aminotransferase (OAT) activity tended to be lower in uremic rats and was correlated with urea clearance and with carbamoyl phosphate synthetase activity. Renal OAT activity in uremic rats was also correlated with urea clearance. When uremic rats were maintained for five months, OAT activity was significantly decreased in liver but not in kidney and the activity of ornithine decarboxylase (ODC), the enzyme regulating polyamine biosynthesis, was reduced in both liver and kidney. In cross-over experiments, evidence was obtained for a factor in uremic kidney cytosol which inhibited renal ODC activity.  相似文献   

10.
Heme administration in vivo results in the suppression of synthesis of rat hepatic δ-aminolevulinic acid (ALA) synthetase and induction of rat hepatic heme oxygenase. Intravenous heme administration in vivo results in the appearance of cyclic progressively damped oscillations of both hepatic ALA synthetase activity and hepatic heme oxygenase activity. Heme oxygenase induction precedes in time the induction of ALA synthetase. ALA synthetase oscillations are observed in hepatic cell cytosol and mitochondrial fractions as well as in the total homogenate. Cycloheximide pretreatment abolishes both the ALA synthetase and heme oxygenase oscillations, while actinomycin D pretreatment has only a minimal effect on the induction of heme oxygenase. These results suggest that hepatic heme metabolism is closely regulated by rapid changes in the capacity to synthesize and catabolize heme, and the cyclic oscillations following intravenous heme may be a manifestation of the feedback regulation processes involved. This regulatory capacity is dependent on protein synthesis, and the primary site of regulation may be at the translational level on the endoplasmic reticulum.  相似文献   

11.
12.
Purification procedures for methionine-tRNA synthetase and lysine-tRNA synthetase from rabbit liver cytosol are presented. The purification factor for both enzymes is higher than that reported previously. The data suggest that methionine-tRNA synthetase and lysine-tRNA synthetase occur as a mixture in rabbit liver cytosol rather than as a complex.  相似文献   

13.
Butylate hydroxyanisole (BHA) is a synthetic phenol that is widely utilized as a preservative by the food and cosmetic industries. The antioxidant properties of BHA are also frequently used by scientists to claim the implication of reactive oxygen species (ROS) in various cellular processes, including cell death. We report on the surprising finding that BHA functions as a direct inhibitor of RIPK1, a major signaling hub downstream of several immune receptors. Our in silico analysis predicts binding of 3-BHA, but not 2-BHA, to RIPK1 in an inactive DLG-out/Glu-out conformation, similar to the binding of the type III inhibitor Nec-1s to RIPK1. This predicted superior inhibitory capacity of 3-BHA over 2-BHA was confirmed in cells and using in vitro kinase assays. We demonstrate that the reported protective effect of BHA against tumor necrosis factor (TNF)-induced necroptotic death does not originate from ROS scavenging but instead from direct RIPK1 enzymatic inhibition, a finding that most probably extends to other reported effects of BHA. Accordingly, we show that BHA not only protects cells against RIPK1-mediated necroptosis but also against RIPK1 kinase-dependent apoptosis. We found that BHA treatment completely inhibits basal and induced RIPK1 enzymatic activity in cells, monitored at the level of TNFR1 complex I under apoptotic conditions or in the cytosol under necroptosis. Finally, we show that oral administration of BHA protects mice from RIPK1 kinase-dependent lethality caused by TNF injection, a model of systemic inflammatory response syndrome. In conclusion, our results demonstrate that BHA can no longer be used as a strict antioxidant and that new functions of RIPK1 may emerge from previously reported effects of BHA.Subject terms: Kinases, Apoptosis, Necroptosis, Target identification, Cell death and immune response  相似文献   

14.
Two dipeptide cleaving enzymes from mouse brain cytosol were purified in parallel by ammonium sulfate precipitation followed by ultrafiltration and chromatography on diethylaminoethyl cellulose and hydroxylapatite. The enzymes appeared as non-overlapping peaks during the final step. The purification attained was 431-fold for enzyme I and 61-fold for enzyme II. The latter, from its specificity, pH optimum, and inhibition by SH is similar to glycylleucine dipeptidase (IUB 3.4.13.2) from other mammalian sources. Purification of enzyme I has not been reported previously. It is inhibited by EDTA and o-phenanthroline and stimulated by SH. Typical substrates are Ala-Ala, Lys-Ala, Trp-Gly and Pro-Ala. Some activity was found against peptides with 3 or more residues but none against peptides containing acidic or D-amino acids.  相似文献   

15.
After binding to specific cell surface receptors, interferon-alpha (IFN-alpha) along with its receptor is internalized by the cells. However, the physiological significance of the internalization of IFN is not known. We have found that the lectin concanavalin A (ConA), which does not inhibit the binding of 125I-rIFN-alpha A, inhibits both the internalization of 125I-rIFN-alpha A and the rIFN-alpha A-induced increase in the levels of 2',5'-oligo(A) synthetase mRNA and enzymatic activity in the B lymphoblastoid cell line Daudi. The reduced level of IFN-induced 2',5'-oligo(A) synthetase in ConA-treated cells was due neither to direct inhibition of the enzymatic activity nor to generalized inhibition of protein or RNA synthesis. The dose-response curves were similar for the effect of ConA to inhibit 125I-rIFN-alpha A internalization and 2',5'-oligo(A) synthetase induction. The correlation between the ConA-mediated inhibition of both 125I-rIFN-alpha A internalization and 2',5'-oligo(A) synthetase induction suggests that internalization of rIFN-alpha A plays a role in the responses to rIFN-alpha A. However, since ConA inhibits protein mobility in the plasma membrane, it is possible that ConA is also preventing aggregation of IFN receptors or interactions between IFN receptors and signal transducing proteins in the plasma membrane that may be necessary for responses to IFN.  相似文献   

16.
Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteine, and L-valine into the tripeptide ACV. ACV synthetase has previously been localized to the vacuole where it is thought to utilize amino acids from the vacuolar pools. We localized ACV synthetase by subcellular fractionation and immuno-electron microscopy under conditions that prevented proteolysis and found it to co-localize with isopenicillin N synthetase in the cytosol, while acyltransferase localizes in microbodies. These data imply that the key enzymatic steps in penicillin biosynthesis are confined to only two compartments, i.e., the cytosol and microbody.  相似文献   

17.
Aminoacyl-tRNA synthetases play a central role in maintaining accuracy during the translation of the genetic code. To achieve this challenging task they have to discriminate against amino acids that are very closely related not only in structure but also in chemical nature. A 'double-sieve' editing model was proposed in the late seventies to explain how two closely related amino acids may be discriminated. However, a clear understanding of this mechanism required structural information on synthetases that are faced with such a problem of amino acid discrimination. The first structural basis for the editing model came recently from the crystal structure of isoleucyl-tRNA synthetase, a class I synthetase, which has to discriminate against valine. The structure showed the presence of two catalytic sites in the same enzyme, one for activation, a coarse sieve which binds both isoleucine and valine, and another for editing, a fine sieve which binds only valine and rejects isoleucine. Another structure of the enzyme in complex with tRNA showed that the tRNA is responsible for the translocation of the misactivated amino-acid substrate from the catalytic site to the editing site. These studies were mainly focused on class I synthetases and the situation was not clear about how class II enzymes discriminate against similar amino acids. The recent structural and enzymatic studies on threonyl-tRNA synthetase, a class II enzyme, reveal how this challenging task is achieved by using a unique zinc ion in the active site as well as by employing a separate domain for specific editing activity. These studies led us to propose a model which emphasizes the mirror symmetrical approach of the two classes of enzymes and highlights that tRNA is the key player in the evolution of these class of enzymes.  相似文献   

18.
Both cytosol and membranes of human erythrocytes display protein kinase activity towards exogenous protein substrates such as casein, phosvitin andhistones. The histone kinase activity, unlike casein kinase, of both cytosol and membranes is increased by cyclic AMP. The protein kinase forms removed from the membranes with 0.7 M NaCl, phosphorylate only serine residues of both casein and histones through a mechanism cyclic AMP-independent.The protein kinase activity located in the cytosol (hemolysate) is due also to enzyme forms phosphorylating both serine and threonine residues of casein, in addition to forms phosphorylating only serine residues of casein and histones.Also the cytosol kinase forms, once partially purified by Sepharose 6B filtration, appear to be cyclic AMP-independent.  相似文献   

19.
林肯链霉菌谷氨酰胺合成酶活力调节的研究   总被引:1,自引:0,他引:1  
对不同氮源生长条件下林肯链霉菌无细胞粗提液中谷氨酰胺合成酶 (GS)的研究结果表明 ,高浓度NH+4阻遏了GS的生物合成。从不同氮源生长条件下林肯链霉菌中分离纯化了GS ,其性质没有差别。以受腺苷化调节的产气克雷伯氏菌GS作对照 ,林肯链霉菌GS没有明显的氨休克作用 ,经蛇毒磷酸二酯酶处理后 ,其活力没有变化。这些结果都说明林肯链霉菌GS不存在腺苷化共价修饰这一调节方式。反馈抑制作用是林肯链霉菌GS的一种重要的调节方式 ,这种抑制作用是以累积的方式进行的 ,这表明各种抑制剂对GS作用位点不同 ,各种抑制剂对GS的抑制作用是相互独立的。由此推测 ,林肯链霉菌GS是一种变构酶。  相似文献   

20.
Exposure to N2O inactivates cob[I]alamin and interferes with the activity of methionine synthetase, of which cob[I]alamin is a coenzyme. Less directly, it stops the formation of folate polyglutamate from tetrahydrofolates. Studies on the activity of folate polyglutamate synthetase in rat liver in vivo were carried out. The synthetase activity increased after exposure to N2O for up to 48 h, but longer exposure was accompanied by a return of activity to baseline values. The rise in synthetase activity was prevented by supplying methionine, 5'-methylthioadenosine or 5-formyltetrahydrofolate. The fall in folate polyglutamate synthetase activity after 48 h was accompanied by a restoration of hepatic synthesis of folate polyglutamate despite continuation of N2O exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号