首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During the second half of the last century, the Lake Victoria ecosystem has undergone drastic ecological changes. Most notable has been the decline in the populations of many endemic cichlid fishes. The lake has lost nearly 200 haplochromines and one tilapiine, Oreochromis esculentus. The above changes have been attributed to effects of species stocking and, in particular, from predation pressure by the introduced Nile perch, Lates niloticus. Other factors that have led to the decline of the endemic species include intensive non-selective fishing, extreme changes in the drainage basin, increased eutrophication, and the invasion of the lake by the water hyacinth, Eichhornia crassipes. However, the remnants of some species that had disappeared from Lake Victoria occur abundantly in the Yala Swamp lakes (Kanyaboli, Sare and Namboyo). This paper discusses the biodiversity of the swamp and the three lakes and gives suggestions for their conservation.  相似文献   

3.
Discovering genetic markers associated with phenotypic or ecological characteristics can improve our understanding of adaptation and guide conservation of key evolutionary traits. The Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) of the northern Great Basin Desert, USA, demonstrated exceptional tolerance to high temperatures in the desert lakes where it resided historically. This trait is central to a conservation hatchery effort to protect the genetic legacy of the nearly extinct lake ecotype. We genotyped full‐sibling families from this conservation broodstock and samples from the only two remaining, thermally distinct, native lake populations at 4,644 new single nucleotide polymorphisms (SNPs). Family‐based genome‐wide association testing of the broodstock identified nine and 26 SNPs associated with thermal tolerance (p < 0.05 and p < 0.1), measured in a previous thermal challenge experiment. Genes near the associated SNPs had complex functions related to immunity, growth, metabolism and ion homeostasis. Principal component analysis using the thermotolerance‐related SNPs showed unexpected divergence between the conservation broodstock and the native lake populations at these loci. FST outlier tests on the native lake populations identified 18 loci shared between two or more of the tests, with two SNPs identified by all three tests (p < 0.01); none overlapped with loci identified by association testing in the broodstock. A recent history of isolation and the complex genetic and demographic backgrounds of Lahontan cutthroat trout probably limited our ability to find shared thermal tolerance loci. Our study extends the still relatively rare application of genomic tools testing for markers associated with important phenotypic or environmental characteristics in species of conservation concern.  相似文献   

4.
Daphnia lumholtzi comprises a substantial component of the zooplankton community during mid‐ to late‐summer in Lake Chautauqua, a floodplain lake along the Illinois River near Havana, Illinois. In order to quantify the utilization of D. lumholtzi by juvenile fishes, diet analyses were conducted for seven juvenile fish species collected from Lake Chautauqua during the 2001 annual drawdown period. Freshwater drum Aplodinotus grunniens and emerald shiner Notropis atherinoides demonstrated negative selectivity for D. lumholtzi relative to native zooplankton species whereas four species of fish (bluegill Lepomis macrochirus, white bass Morone chrysops, white crappie Pomoxis annularis and black crappie Pomoxis nigromaculatus) consumed substantial amounts of D. lumholtzi. Although selectivity values for D. lumholtzi varied among these fish species, positive selection for D. lumholtzi increased similarly among larger size classes of each fish species, and corresponded with ontogenetic shifts in diet. Mean body length of D. lumholtzi consumed by 20–69 mm LT juvenile fishes ranged from 0·75 to 0·99 mm with a calculated total length range of 2·0–2·6 mm. Results from this study provide evidence that high abundances of D. lumholtzi in mid‐ to late‐summer provide an additional food source for several juvenile fish species during a time when abundances of large native cladoceran species (i.e. Daphnia) are low, and juvenile fishes are searching for larger prey associated with ontogenetic shifts from zooplankton to macroinvertebrates and fishes. Because zooplankton production is typically lower in rivers than in lakes, survivorship of juvenile fishes produced in floodplain lakes may be higher in riverine systems if they are not reliant on zooplankton as a primary food resource. Therefore, high abundances of D. lumholtzi may benefit juvenile fishes in managed floodplain lakes, such as Lake Chautauqua, by increasing growth and facilitating the transition from zooplanktivory to insectivory or piscivory.  相似文献   

5.
Synopsis Effects of environmental factors on the distribution and abundance of yellow perch and central mudminnows in northern Wisconsin were examined by holding populations of these fishes within single-species enclosures in a series of three small forest lakes having a species-richness gradient of one to four species. These enclosures allowed each species to experience environmental conditions within each lake without directly interacting with each other. In the four-species lake, two other sets of enclosures addressed the effects of intra- and interspecific competition. Changes in total biomass of enclosure stocks (from growth and mortality) indicated that in the absence of other species, perch did best in the lake containing the richest fish assemblage, intermediate in the two-species lake, and worst in the mudminnow-only lake. Mudminnow stocks similarly performed significantly better in the four-species lake than the mudminnow-only lake. These results suggest that the lakes' environmental conditions contribute to the patterns of presence and abundance of perch, but that interspecific interactions override a similar contribution for the mudminnow, which is regarded as a fugitive species. Perch performances were also sensitive to fish densities within enclosures, declining significantly when stocks were doubled, either by adding more perch or equal numbers of mudminnows.  相似文献   

6.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

7.
Synopsis Man has been associated with a variety of lakes throughout his evolutionary history in Africa. Lakeside dwellers have a close association with and understanding of these lakes. In the past four decades, however, overexploitation, introductions of alien fishes and the possibility of oil pollution present frightening prospects of irreversible losses and massive extinction. The development of scientific understanding of the life support processes, the ecosystems and the rich communities of these lakes has been so outpaced by exploitation and manipulations that accurate predictions regarding the future are impossible. Shallow lakes are more sensitive to physico-chemical changes caused by climatic as well as agricultural and industrial development than deep lakes, but their biotae are endowed with a resilience which facilitates recovery from major depletions to population size. In contrast, the speciose endemic cichlid faunae of deep lakes are sensitive to fishing pressure, are awkward to manage and should be regarded as representing a much smaller resource than initially imagined. The clupeids of Lake Tanganyika can sustain intensive fishing, but their introduction into other natural lakes is not recommended. Enormous changes to native faunae followed the introduction of Lates niloticus to lakes Kyoga and Victoria with dramatic consequences for the fisheries, for the socio-economic status of the region and for the maintenance of biotic diversity. Extinction of almost 300 fish species is a possible further consequence of L. niloticus predation. Intensive selective fishing for L. niloticus is being initiated, but is unlikely to resolve the problem. In the time necessary to substantially reduce L. niloticus, numerous endemic fishes may suffer extinction. A viable alternative to extinction of these species is captive propagation. Conservation of fishes by captive propagation is not a common or well documented practice. To encourage the acceptance of this conservation option a theoretical scenario in which the concepts and protocols are applied to the fishes of Lake Victoria is given. The possibility of returning rescued populations to the lake at a later date, assuming L. niloticus populations have been reduced, is also discussed. It is recommended that captive propagation should be practised to conserve species and to retain the option of returning rescued taxa. Scientists are urged to seek the funding to study tropical ecosystems so that conservation and rational development may acquire a sound foundation.  相似文献   

8.
Prior to the 1980s, lakes Kyoga and Victoria previously supported an exceptionally diverse haplochromine fish fauna comprising at least 11 trophic groups. The species and trophic diversity in these lakes decreased when the introduced Nile perch depleted haplochromine stocks. From December 1996 to October 1998, we studied species and trophic diversity of haplochromine fishes in six satellite lakes without Nile perch in the Kyoga basin and compared them with the Kyoga main lake against historical data from Lake Victoria where Nile perch were introduced. Forty‐one species were found in the study area, of which, the Kyoga satellite lakes contributed 37 species in comparison to only 14 from the Kyoga main lake. Analysis of trophic diversity based on 24 species that contained food material revealed seven haplochromine trophic groups (insectivores, peadophages, piscivores, algal eaters, higher plant eaters, molluscivores and detritivores) in the Kyoga satellite lakes in comparison to two trophic groups (insectivores and molluscivores) in the Kyoga main lake. Many of the species and trophic groups of haplochromines depleted by the introduced Nile perch in lakes Kyoga and Victoria still survive in the Kyoga satellite lakes. This is attributed to the absence of Nile perch in those lakes. Nile perch has been prevented from spreading into the satellite lakes by swamp vegetation that separate them from the main lakes. If these swamps prevent Nile perch from spreading into the lakes, it is possible to conserve fish species, especially haplochromines, which are threatened by introduction of Nile perch in the main lakes.  相似文献   

9.
The introduction of Nile perch, Lates niloticus, to Lake Victoria, East Africa, interacted with eutrophication to cause a reorganization of the lake's food web and the extirpation of many endemic fishes. The Lake Kyoga satellite system lies downstream from Lake Victoria. It encompasses species‐rich lakes where Nile perch are absent or very rare, and low diversity lakes where L. niloticus is abundant. In 1999 we surveyed seven lakes in the Kyoga system using experimental monofilament gill nets (1/4–1 inches variable mesh). At Boston University we assessed δ15N signatures of epaxial muscle from subsamples of the catch (n = 361). These signatures are often highly correlated with the near‐term mean realized trophic position of an individual organism. A neural network analysis of fish length, species name, trophic level, and lake of origin fish explained 94% of the sample variance in δ15N. We analysed statistical patterns in these signatures at a number of spatial scales. The relationship between trophic level and δ15N varied greatly among lakes. Higher diversity perch‐free lakes had greater variance in δ15N values and fish lengths than lower diversity Nile perch lakes, suggesting an important relationship between species diversity and functional diversity. Against expectations, lake size was negatively correlated with δ15N. Patterns in stable isotope signatures indicated that Nile perch lakes have shorter food chains than perch‐free lakes. The results throw up two management problems for the Kyoga system. Impacted lakes need to be studied to understand and ameliorate the community‐level effects of Nile perch introduction, whereas the species‐rich nonperch lakes, which harbour a large proportion of the remaining diversity of regionally endemic taxa, are in need of conservation planning.  相似文献   

10.
Swimbladder walls of lake charr, Salvelinus namaycush, from Great Slave Lake (GSL), Northwest Territories, Canada, were unusually thick for the species. The thinnest sections of the GSL bladders (mean = 2.44mm, range = 1.1–4.4mm) were significantly thicker (P = 0.001) than lake charr swimbladders collected from two small Province of Ontario lakes (means = 0.65 and 0.92mm), whose populations were assumed to be representative of the species. Variance in wall thickness was also greater in GSL lake charr than in charr from two small lakes (P < 0.02). Within individuals, some of the GSL bladder walls were markedly irregular in thickness, but whether these anomalies exist in situ or were artifacts of preservation remains uncertain. The bulk of the tissue in the thickest sections of the GSL swimbladders was in the tunica serosa (outer layer). The extent of the modification of the GSL swimbladders is extraordinary for northern fishes in postglacial lakes.  相似文献   

11.
Synopsis Heterogeneous gene frequencies of Est-1 across groups ofNotropis cornutus provide evidence of behaviourally imposed restrictions on stock structuring. Positive fixation indices (F1S = 0.056 and F1T = 0.085) were reflected by a deficiency of heterozygotes for pooled groups. The degree of subdivision ofN. cornutus stocks cannot be evaluated with the present evidence. but it is likely that their schooling behaviour is associated with significant genotypic structuring of the species.  相似文献   

12.
Two pairs of neighboring subalpine lakes located in the Northern Calcareous Alps of Austria were investigated. Each pair comprised a deeper lake containing European minnows (Phoxinus phoxinus ), and a corresponding shallower lake harboring Alpine newts (Triturus alpestris ) as top predators. Plankton successions within fish and amphibian lakes differed markedly from each other. Throughout the year rotifers numerically dominated within the minnow lakes, while pigmented copepods (Genera Heterocope, Acanthodiaptomus , Arctodiaptomus , Mixodiaptomus ) and Daphnia were prominent in the amphibian lakes, at least early during the ice‐free period. We argue that size‐selective predation by minnows was the ultimate reason for this predominance of smaller zooplankton. While one of the minnow lakes was characterized by a succession of spatially and temporally segregated rotifer species, the other minnow lake permitted the development of populations of small‐sized Bosmina and Ceriodaphnia during summer, probably due to the existence of a strong oxycline allowing zooplankton crustaceans to avoid predation from shore‐based shoals of minnows. Once trout were introduced into this lake, minnows were visibly reduced in abundance. Bosmina and Ceriodaphnia disappeared and Daphnia together with a predacious copepod (Heterocope ) emerged either from egg banks or arrived from nearby source populations. We argue that the crustacean communities within the fishless lakes were adapted to the comparatively weak predation rates of Alpine newts. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Residential development of lakeshores is expected to change a variety of key lake features that include increased nutrient loading, increased invasion rate of nonnative species, increased exploitation rates of fishes by anglers, and alteration of littoral habitats. All of these factors may alter the capacity of lakes to support productive native fish populations. Fourteen north temperate lakes were surveyed to examine how growth rates of two common fish species (bluegill sunfish, Lepomis macrochirus; largemouth bass, Micropterus salmoides) varied along a residential development gradient. Size-specific growth rates for both species were negatively correlated with the degree of lakeshore residential development, although this trend was not statistically significant for largemouth bass. On average, annual growth rates for bluegill sunfish were 2.6 times lower in heavily developed lakes than in undeveloped lakes. This effect of lakeshore development on fish growth was not size specific for bluegills between 60 and 140 mm in total length. An index of population production rate that accounted for both the size-specific growth rate and the size distribution of fishes showed that bluegill populations were approximately 2.3 times less productive in highly developed lakes than in undeveloped lakes. Our results suggest that extensive residential development of lakeshores may reduce the fish production capacity of aquatic ecosystems. Received 29 April 1999; Accepted 26 October 1999.  相似文献   

14.
Allozyme analyses were performed to determine patterns of genetic variation and phylogenetic relationships within the genus Notropis in southern Mexico. Products of 28 gene loci were resolved in 24 geographic samples belonging to four putative species. These species represent the southern limit of the Cyprinidae in North America. Five loci were found monomorphic and 11 were diagnostic among species when the outgroup, Phoxinus phoxinus, was not taken into account. Four groups were identified, but these do not correspond perfectly to the four nominal species. Notropis sallaei was identified by allozyme analyses being the most basal among southern Mexican Notropis and the most genetically divergent. Notropis imeldae, was also diagnosed on the basis of allozymic variation, however a population sample representing the Balsas drainage was genetically divergent and is considered as an undescribed new species (N. n. sp.). No genetic differences were found between the samples of N. boucardi and N. moralesi. Therefore, we recommend that N. moralesi should be considered as a junior synonym of N. boucardi. A broad geographic sampling strategy was employed across all the distribution range of N. boucardi representing rivers from three different drainages, which cover both Mexican slopes. The slight divergence found among the headwater populations of N. boucardi permitted us to predict a model of paleohydrographic relationships of these three drainages. Two alternative hypotheses are postulated to explain the current distribution pattern of populations of N. boucardi in southern Mexico.  相似文献   

15.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome‐wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex in Nicaragua is a powerful system for studying evolutionary processes. Independent colonizations of isolated young crater lakes by Midas cichlid populations from the older and great lakes of Nicaragua resulted in the repeated evolution of adaptive radiations by intralacustrine sympatric speciation. In this study we performed genome scans on two repeated radiations of crater lake species and their great lake source populations (1030 polymorphic AFLPs, n ~ 30 individuals per species). We detected regions under divergent selection (0.3% in the crater lake Xiloá flock and 1.7% in the older crater lake Apoyo radiation) that might be responsible for the sympatric diversifications. We find no evidence that the same genomic regions have been involved in the repeated evolution of parallel adaptations across crater lake flocks. However, there is some genetic parallelism apparent (seven out of 51 crater lake to great lake outlier loci are shared; 13.7%) that is associated with the allopatric divergence of both crater lake flocks. Interestingly, our results suggest that the number of outlier loci involved in sympatric and allopatric divergence increases over time. A phylogeny based on the AFLP data clearly supports the monophyly of both crater lake species flocks and indicates a parallel branching order with a primary split along the limnetic‐benthic axis in both radiations.  相似文献   

16.
1. Shallow lakes in the Boreal Transition Zone (BTZ) in Alberta, Canada are naturally productive systems that provide important breeding and moulting habitat for many waterfowl (Anseriformes). To examine the relative importance of biotic and abiotic factors on waterfowl population densities, species richness and community composition, we surveyed 30 shallow lakes and evaluated the relationships among fish communities, lake characteristics and waterfowl in both breeding and moulting habitat. Shallow lakes were either fishless (n = 15), contained only small‐bodied fishes (n = 10) or contained large‐bodied, mostly predatory, fish in addition to small‐bodied fish (n = 5). 2. Environmental factors, including water colour, submerged aquatic vegetation, lake area and potassium, explained 24.3% of the variation in breeding waterfowl communities. Fish assemblage contributed independently to a small but significant proportion (13.4%) of the variation, while 13.8% of the explained variation was shared between environmental factors and fish assemblage. In total, 51.5% of the variation in breeding waterfowl communities was explained. 3. Overall, 55.5% of the total variation in moulting waterfowl communities was explained. Environment alone [especially total phosphorus, lake area, maximum depth and dissolved organic carbon (DOC)] and variation shared by fish and environment similarly accounted for most of the explained variation in moulting waterfowl communities (21.7% and 25.7% respectively), while fish assemblage was only one‐third as important (8.1%). 4. Both breeding and moulting waterfowl densities increased with lake productivity, even in eutrophic and hypereutrophic lakes. Breeding waterfowl density was also twice as great in fishless lakes than in lakes with fish, after accounting for lake area. 5. Certain waterfowl taxa were linked to fishless lakes, especially in the moulting season. Canvasback and moulting ring‐necked ducks were linked to small‐bodied fish lakes, whereas moulting common goldeneye were indicators of large‐bodied fish lakes. Knowledge of fish presence and species composition can therefore help guide conservation and management of waterfowl habitat in western Canada. Our results suggest that management efforts to maintain the most productive waterfowl habitat in the BTZ should focus on smaller, shallow, fishless lakes, particularly given that larger fish‐bearing systems have greater regulatory protection.  相似文献   

17.
The viviparous freshwater gastropod Tylomelania (Caenogastropoda: Cerithioidea: Pachychilidae) endemic to the Indonesian island Sulawesi has radiated extensively in two ancient lake systems. We here present the first systematic species-level review of taxa in the five lakes of the Malili lake system, which contains the most diverse and best studied freshwater fauna on Sulawesi. Our results indicate a significantly higher diversity of Tylomelania in these lakes than previously perceived based on morphological evidence for delimiting the taxa. We describe nine new species, thus increasing the number of taxa known from the Malili lakes to 25. Tylomelania species are inhabiting all available substrates in the lakes, and the diversity of habitats is reflected in an unparalleled range of radula types in this closely related group. Several species show a high intraspecific variability in some characters, and their closer investigation will probably lead to the discovery of more cryptic species. As it is, this species flock on Sulawesi is among the largest freshwater mollusc radiations known. Since the Malili lake system also contains other large endemic species flocks of e.g. crustaceans and fishes, it is a major hotspot of freshwater biodiversity in Asia to become a conservation priority. Handling editor: K. Martens  相似文献   

18.
根据2008年5月至2011年1月对松嫩湖群20个主要渔业湖泊的鱼类资源调查,分析了该湖群鱼类区系特征和群落相似性状况。松嫩湖群的鱼类区系由4目9科34属46种和亚种构成,其中土著鱼类3目8科27属39种和亚种,包括中国特有种3种,中国易危种1种,冷水种5种;由5个区系复合体构成,以东部江河平原区系复合体为主体;鲤形目31种,鲤科26种,分别占优势;鱼类区系具有南北方物种相互渗透、古北界与东洋界交汇过渡的混色类群特征。目前松嫩湖群鱼类群落种类组成的相似度总体较低,群落数量结构的相似度总体较高,鱼类群落相似性面临的主要问题是自然与人为因素导致湖泊生态环境的变化和放养、移殖与过度捕捞导致鱼类资源的减少与小型化,二者的叠加效应使鱼类群落长期处于受损状态,群落结构及其相似性处在动态变化中,群落内种间关系的协调性、种群结构的合理性和群落结构的稳定性均在下降。针对这些情况和群落相似性现状,提出未来松嫩湖群湖泊渔业的发展方向是优化调整群落结构,发展多种群湖泊渔业,合理利用土著鱼类资源。  相似文献   

19.
Although both patch area and shape are key factors driving biodiversity in fragmented terrestrial landscapes, researchers have had limited and mixed success in documenting the effects of these two factors on aquatic ecosystems. Here we examined the effects of lake area and shape on macrophyte species richness in a lowland floodplain by considering the differences in lake types (i.e. marsh, oxbow, man-made lakes). We surveyed species richness of native macrophytes in 35 lakes including 11 marshes, 11 oxbows and 13 man-made lakes with various complex shapes covering from 0.25 to 46.3 ha. Model selection clearly supported the existence of interaction between area and shape effects: large-circular and small-complex lakes supported a higher macrophyte species richness, while it was lower in large-complex and small-circular lakes. Among the three lake types, marsh lakes were more circular and man-made lakes had more complex shapes, while oxbow lakes were intermediate between these two. Also, marsh lakes had positive species–area relationships, while man-made lakes had negative relationships. Our results suggest the opposing shape complexity and species–area relationships of these two contrasting lake types are the result of the interactions between lake area and shape. These results indicate that different lake types result in variations in their conservation value for preserving macrophyte diversity. We suggest that small complex-shaped patches (especially oxbow lakes), which are often given the lowest conservation priority in terrestrial ecosystems, cannot be disregarded when conserving macrophyte biodiversity in aquatic ecosystems.  相似文献   

20.
1. The prevalence of mycosporine‐like amino acids (MAAs) – a group of potential ultraviolet (UV)‐photoprotective compounds – was surveyed across 11 species of freshwater copepods from 20 lakes of varying ultraviolet radiation (UVR) transparency in North America, New Zealand and Argentina. Co‐occurring cladocerans were also analysed (seven species from 12 lakes). Many of the calanoid copepod populations were red with carotenoid pigmentation, allowing comparison of MAA and carotenoid accumulation as photoprotective strategies. 2. In two Pennsylvania (U.S.A.) lakes, MAA and carotenoid contents were followed during the early spring to mid‐summer period of lake warming. A pronounced seasonal pattern of higher carotenoid/low MAA content in spring, shifting to low carotenoid/higher MAA content in summer, was observed in calanoids from the more UV transparent lake. 3. All copepod samples contained MAAs. Visibly red calanoids, especially southern Hemisphere Boeckella, often had moderate to high concentrations (2.5–11 μg MAA mg?1 dw), but low concentrations (0.04–1 μg MAA mg?1 dw) in some N. American red calanoids show that high carotenoid pigmentation (e.g. 5–10 μg carotenoid mg?1 dw) does not necessarily imply high MAA content. 4. No cladoceran sample had more than trace amounts of MAAs (<0.05 μg mg?1 dw). Therefore, MAA accumulation does not seem to be a photoprotective strategy utilized by Daphnia (five species from nine lakes) or other cladocerans. 5. Seven identifiable MAAs were widely distributed among both calanoids and cyclopoids. Shinorine was ubiquitous and was usually the most abundant MAA in N. American samples. In contrast, porphyra‐334 was the predominant MAA in the southern Hemisphere Boeckella. 6. Copepods from higher UVR lakes tended to have a higher MAA content, but this relationship was statistically weak overall and taxon‐specific when found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号