首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hepatic elimination of phenytoin has been studied in the isolated rat liver perfused at constant flow with Krebs solution alone and in the presence of albumin. At an albumin concentration of 0.5 g/dl, 46.6% of the phenytoin was bound in the perfusate and the comparable value at 5.0 g/dl was 87.4%. The increase in binding resulted in a reduction in the hepatic extraction ratio from 0.67 in Krebs to 0.54 and 0.28 at the two albumin concentrations, respectively. Analysis of this data together with that from the literature on propranolol and warfarin indicated that they were consistent with the perfusion-limited model of hepatic clearance. Accordingly, the general relationship between the extraction ratio and the free fraction of drug in the blood is hyperbolic with the precise shape being determined by the ratio of the clearance of the drug from liver water to the hepatic blood flow rate.  相似文献   

2.
Intravenous administration of hypotensive doses (30-200 micrograms/kg) of nifedipine to cats anesthetized with pentobarbital caused an increase in cardiac output accompanied by hepatic venoconstriction. The hepatic venoconstriction and the increase in cardiac output were abolished in animals in which the hepatic sympathetic nerves were cut, the adrenal glands were excluded, and the kidneys were removed. This contrasts with the indirect hepatic venoconstrictor action of isoproterenol which was shown previously not to be abolished by these procedures. Further experiments showed that the hepatic venoconstrictor effect of nifedipine was blocked by removal of the kidneys, but not by removal of the hepatic sympathetic nerves and adrenals. These results support the hypothesis that venoconstriction plays an important role when drugs produce increased cardiac output. In nephrectomized animals, nifedipine had no direct effects on hepatic blood volume and it did not alter the effects of infusions of norepinephrine on hepatic blood volume, which have previously been shown to be mediated through alpha 2-adrenoceptors. However, it did reduce the hepatic venous responses to hepatic sympathetic nerve stimulation by 30%.  相似文献   

3.
In the perfused rat liver stimulation of the hepatic nerves around the portal vein and the hepatic artery was previously shown to increase glucose output, to shift lactate uptake to output, to decrease and re-distribute intrahepatic perfusion flow and to cause an overflow of noradrenaline into the hepatic vein. The metabolic effects could be caused directly via nerve hepatocyte contacts or indirectly by the hemodynamic changes and/or by noradrenaline overflow from the afferent vasculature into the sinusoids. Evidence against the indirect modes of nerve action is presented. Reduction of perfusion flow by lowering the perfusion pressure from 2 to 1 ml X min-1 X g-1--as after nerve stimulation--or to 0.35 ml X min-1 X g-1--far beyond the nerve stimulation-dependent effect--did not change glucose output and lowered lactate uptake only slightly. Only re-increase of flow to 2 ml X min-1 X g-1 enhanced glucose and lactate release transiently due to washout of glucose and lactate accumulated in parenchymal areas not perfused during low perfusion flow. In chemically sympathectomized livers nerve stimulation decreased perfusion flow almost normally but without changing the intrahepatic microcirculation; yet it enhanced glucose and lactate output only insignificantly and caused noradrenaline overflow of less than 10% of normal. Conversely, in the presence of nitroprussiate (III) nerve stimulation reduced overall flow only slightly without intrahepatic redistribution but still increased glucose and lactate output strongly and caused normal noradrenaline overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Positive end-expiratory pressure (PEEP) may impair extrapulmonary organ function. However, the effects of PEEP on the liver are unclear. We tested the hypothesis that at a constant cardiac output (CO), PEEP does not induce changes in hepatic blood flow (QL) and parenchymal performance. In splenectomized, close-chested canine preparations (group I, n = 6), QL was derived as hepatic outflow using electromagnetic flow probes (QLemf), and hepatic performance was defined by extraction and clearance of indocyanine green (ICG). In a noninvasive model (group II, n = 7), the effects of PEEP on hepatic performance alone were similarly analyzed. Measurements were taken during intermittent positive-pressure ventilation (IPPV1), after addition of 10 cmH2O PEEP to IPPV (PEEP1), during continued PEEP but after return of CO to IPPV1 levels by intravascular volume infusions (PEEP2), and after removal of both PEEP and excess blood volume (IPPV2). Phasic inspiratory decreases in QLemf present during positive-pressure ventilation were not increased during either PEEP1 or PEEP2. Mean QLemf decreased proportionately with CO during PEEP1 (P less than 0.05), but was restored to IPPV1 levels in a parallel fashion with CO during PEEP2. The ICG pharmacokinetic responses to PEEP were complex, with differential effects on extraction and clearance. Despite this, hepatic performance was not imparied in either group. we conclude that global QL reductions during PEEP are proportional to PEEP-induced decreases in CO and are preventable by returning CO to pre-PEEP levels by intravascular volume infusions. However, covarying changes in blood volume and hepatic outflow resistance may independently modulate hepatic function.  相似文献   

5.
Using a newly described method for obtaining pure, mixed hepatic venous blood samples, it was demonstrated that glucose mobilization from the liver of the anesthetized cat in response to hepatic nerve stimulation is via alpha-adrenergic receptors. Neither the elevation of portal pressure nor the amount of glucose generated by the liver was affected by intraportal administration of 1 mg propranolol/kg (beta blockade). In the presence of alpha-receptor blockade (3 mg phentolamine/kg) the portal venous pressure change was minor and the glucose output actually decreased slightly upon nerve stimulation, a response consistent with our previously demonstrated reduction of glucose output by parasympathetic nerve stimulation. The present responses to nerve stimulation were not due to activation of pancreatic nerves since these nerves were routinely ligated.  相似文献   

6.
The aim of the present study was to determine the extent to which the fish liver is perfused with blood. Transonic? flow probes were therefore implanted around the ventral aorta and hepatic vein(s) to record baseline blood flows in rainbow trout (Oncorhynchus mykiss) previously held under two different feeding regimes (food-deprived or fed to satiation, 8-12 weeks). Fish from both groups were exposed to a gradual temperature decrease (12°C to 5°C) and physical disturbance. Cardiac output (Q), stroke volume (Sv) and hepatic venous blood flow (HVBF) were significantly reduced in food-deprived trout at 12°C. Heart rate was not significantly affected by nutritional status, but was significantly reduced when temperature was decreased to 5°C. Physically disturbing each fish at 12°C and 5°C showed that the performance capacity of the heart was not affected by food deprivation as the capacity to increase Q and Sv was not reduced in the food-deprived group. Overall this study showed that food deprivation in rainbow trout reduced cardiac and hepatic blood flows. However, long-term food deprivation did not affect the capacity of the heart to acutely increase performance.  相似文献   

7.
Cell-to-cell communication via gap junctions has been proposed to be involved in the metabolic actions of sympathetic liver nerves in the rat. The effects of hepatic nerve stimulation and noradrenaline-, PGF2 alpha- and glucagon infusion on glucose metabolism and perfusion flow were studied in perfused rat liver in the absence and presence of the gap junctional inhibitors, heptanol, carbenoxolone and (4 beta)phorbol 12-myristate 13-acetate (4 beta PMA). (i) Stimulation of the hepatic nerve plexus increased glucose output, decreased flow and caused an overflow of noradrenaline into the hepatic vein. (ii) Heptanol completely inhibited not only the nerve stimulation-dependent metabolic and hemodynamic alterations but also the noradrenaline overflow. Thus the heptanol-dependent inhibitions were caused primarily by a strong impairment of transmitter release. (iii) Carbenoxolone inhibited the effects of neurostimulation on glucose metabolism partially by about 50%, whereas it left perfusion flow and noradrenaline overflow essentially unaltered. (iv) 4 beta PMA reduced the nerve stimulation-dependent enhancement of glucose release by about 80% but the noradrenaline-dependent increase in glucose output only by about 30%; the increase in glucose release by PGF2 alpha and by glucagon remained essentially unaltered. 4 beta PMA reduced the nerve stimulation-dependent decrease in portal flow by about 35% but did not affect the noradrenaline-and PGF2 alpha-elicited alterations, nor did it alter noradrenaline overflow. The results allow the conclusion that gap junctional communication plays a major role in the regulation of hepatic carbohydrate metabolism by sympathetic liver nerves, but not by circulating noradrenaline, PGF2 alpha or glucagon.  相似文献   

8.
Although recovery of microcirculation is an important determinant for ischemia-reperfusion injury, little information is available about hepatic blood flow after ischemia. To examine regulatory mechanisms of postischemic hepatic microcirculation, we studied the sinusoidal blood flow after portal triad clamping of rat livers for 5, 15, or 30 min. Hepatic tissue blood flow and erythrocyte blood flow in sinusoids were measured using a laser-Doppler flowmeter and an intravital microspectroscope, respectively. There was a time of no blood flow (lag time) in sinusoids after declamping, dependent on the ischemic time. Cholinergic blockade agents eliminated the lag time, whereas nerve stimulation at the hiatus esophagus or on the hepatoduodenal ligament during reperfusion prolonged it. Chemical denervation with 10% phenol or surgical denervation on the hepatoduodenal ligament eliminated the lag time. The prolongation of lag time by nerve stimulation was completely abrogated by truncal vagotomy. These results suggest that the cholinergic vagus nerve is involved in causing the lag time of sinusoidal blood flow in hepatic ischemia-reperfusion.  相似文献   

9.
Among the anesthetics influencing the nitric oxide (NO) pathway, ketamine is widely reported in the literature. We researched the variations in blood physiological parameters following ketamine/xylazine- or pentobarbital-induced anesthesia, with particular emphasis on plasmatic NO levels and oxidative stress-related factors. The effects of ketamine on hepatic blood flow during deep hypothermia were also examined. Adult male Sprague-Dawley rats were anesthetized intraperitoneally with ketamine/xylazine or with sodium pentobarbital. Animals underwent serial blood extraction to analyze acid-base balance and lactate levels in blood, as well as NO, MDA, SH groups, and AST levels in plasma samples. We demonstrated that ketamine leads to increased plasmatic NO levels, induces metabolic acidosis, and causes oxidative damage, though without reaching hepatic toxicity. When experimental hypothermia was induced, ketamine affected hepatic blood flow. Based on these results, we suggest that studies on physiological processes involving NO should exercise caution if anesthesia is induced by ketamine.  相似文献   

10.
Intrinsic regulation of hepatic arterial blood flow depends upon local concentrations of adenosine. The present data show that i.a. infusions of adenosine cause dilation of the hepatic artery and inhibition of arterial vasoconstriction induced by norepinephrine, vasopressin, angiotensin, and hepatic nerve stimulation. Vasoconstriction induced by submaximal nerve stimulation (2 Hz) and norepinephrine infusions (0.25 and 0.5 micrograms X kg-1 X min-1, i.p.v.) were equally inhibited by adenosine. Supramaximal nerve stimulation (8 Hz) was inhibited to a lesser extent. The data are consistent with the hypotheses that (a) adenosine causes nonselective inhibition of vasoconstrictor influences on the hepatic artery; and (b) adenosine antagonizes neurally induced vasoconstriction by a purely postsynaptic effect and does not decrease norepinephrine release. In contrast with the hepatic artery, the intrahepatic portal resistance vessels are not affected by even large doses of adenosine; neither responses in basal tone nor antagonism of vasoconstrictor effects of nerve stimulation, norepinephrine, or angiotensin could be demonstrated. The data are consistent with the hypothesis that the smooth muscle of the portal resistance vessels does not contain adenosine receptors, whereas adenosine receptors on the smooth muscle of the hepatic arterial resistance vessels are of major regulatory importance. Whether endogenous levels of adenosine can reach sufficient concentration to modulate endogenous constrictors remains to be determined.  相似文献   

11.
The metabolic role of neurally released noradrenaline (NA) was studied in the liver of anesthetized dogs. Sustained stimulation with various frequencies was directly applied on the anterior plexus of hepatic nerves. Stimulation-induced changes in plasma concentrations of endogenous catecholamines in hepatic venous blood were determined in correlation with concomitant changes in those of glucose (GL). Mean basal values for hepatic venous NA, adrenaline, dopamine, and GL were 0.062, 0.022, 0.032 ng/mL, and 97.9 mg%, respectively. Among these catecholamines, NA was the only one being released significantly during stimulation. While hepatic venous NA increased rapidly during stimulation, being maximum within 3 min, hepatic venous GL increased gradually, reaching a maximum value 5 min after the onset of stimulation. A highly significant correlation (r = 0.90, P less than 0.001) was found between changes in hepatic venous NA and GL concentrations observed during stimulation at various frequencies (2-16 Hz). However, hepatic vasoconstricting responses to stimulation were not correlated with increased hepatic venous GL. An alpha-blockade with phentolamine (2 mg/kg, iv) resulted in diminished release of GL by approximately 50% (P less than 0.05) and reduced hepatic arterial vasoconstriction by approximately 47% (P less than 0.01) upon stimulation (8 Hz, 5 min), even though NA release was markedly enhanced. We conclude that in the dog, NA is the sole catecholamine released within the liver in response to direct hepatic nerve stimulation, and NA thus released mediates the hepatic glycogenolysis via alpha-adrenoceptors.  相似文献   

12.
The relative potencies of cholecystokinin (CCK)-8 and CCK-33 for decreasing meal size depend on the route of administration. Inhibitory potencies are equal after intraperitoneal administration, but CCK-33 is significantly more potent after intraportal administration. This suggests that CCK-33 is a more effective stimulant of hepatic afferent vagal nerves than is CCK-8. To investigate this possibility, we administered both peptides intraperitoneally in rats with abdominal vagotomies that spared only the hepatic proper vagal nerves (H) and in rats with abdominal vagotomies that spared the common hepatic branch that contains the fibers of the hepatic proper and gastroduodenal nerves (HGD). The vagal afferent innervation in H and HGD rats was verified with a wheat germ agglutinin-horseradish tracer strategy. Intraperitoneal administration of CCK-33 decreased 30-min intake of 10% sucrose in H rats as much as in sham rats, but CCK-8 decreased intake significantly less in H rats than in sham rats. The larger inhibitory effect of CCK-33 than of CCK-8 in H rats is consistent with the hypothesis that CCK-33 is a more effective stimulant of the hepatic proper vagal afferent nerves than CCK-8. In contrast to the results in H rats, the inhibitory potencies of both peptides were significantly and equivalently reduced in HGD rats compared with sham rats. This suggests that there is an inhibitory interaction between the stimulation of the gastroduodenal and hepatic proper afferent fibers by CCK-33.  相似文献   

13.
General anesthesia and hepatic circulation   总被引:5,自引:0,他引:5  
This article describes hepatic circulatory disturbances associated with anesthesia and surgical intervention. The material is presented in three parts: part 1 describes the effects of general anesthetics on the hepatic circulation; part 2 deals with different factors related to surgical procedures and anesthesia; and part 3 analyzes the role of hepatic circulatory disturbances and hepatic oxygen deprivation in anesthesia-induced hepatotoxicity. The analysis of available data suggests that general anesthesia affects the splanchnic and hepatic circulation in various directions and to different degrees. The majority of anesthetics decreases portal blood flow in association with a decrease in cardiac output. However, hepatic arterial blood flow can be preserved, decreased, or increased. The increase in hepatic arterial blood flow, when it occurs, is usually not enough to compensate for a decrease in portal blood flow and therefore total hepatic blood flow is usually decreased during anesthesia. This decrease in total hepatic blood flow has certain pharmacokinetic implications, namely a decrease in clearance of endogenous and exogenous substances with a high hepatic extraction ratio. On the other hand, a reduction in the hepatic oxygen supply might play a certain role in liver dysfunction occurring perioperatively. Surgical procedures-preparations combined with anesthesia have a very complex effect on the splanchnic and hepatic circulation. Within this complex, the surgical procedure-preparation plays the main role in developing circulatory disturbances, while anesthesia plays only a modifying role. Hepatic oxygen deprivation may play an important role in anesthesia-induced hepatotoxicity in different experimental models.  相似文献   

14.
Intrahepatic arteries are richly innervated by both adrenergic and sensory vanilloid-sensitive (capsaicin-sensitive) fibers. Stimulation of capsaicin sensitive fibers has been shown to dilate the intrahepatic vessels by both releasing sensory neuropeptides and by modulating the adrenergic tone. However the participation of capsaicin-sensitive fibers in the mediation of the hepatic artery buffer response (HABR) has not been investigated yet. To explore the involvement of sensory innervation and sensory neuropeptides in the HABR, the experiments were performed on capsaicin-denervated Wistar rats. In addition, we used selective CGRP and tachykinin receptor antagonists to test the participation of CGRP, substance P and NK-A in HABR in the rat. In anesthetized rats the hepatic artery blood flow (HABF), microcirculatory hepatic blood flow (HBF) and portal blood flow (PBF) were determined. The HABR was induced by partial occlusion of the portal vein and maintaining the PBF at 10% of its control preocclusive value. In the control HABR the hepatic artery blood flow increased by 89% (p< 0.005) whilst the HBF at the same time decreased by 32% (p< 0.005) in comparison to preocclusive HABF and HBF values. In sensory-denervated rats the resting HBF and PBF were increased by 23% (p< 0.05) and 34% (p< 0.05), respectively in comparison to the control HBF and PBF values. In this group the induction of the HABR increased the hepatic artery blood flow by only 55% (p< 0.05), whilst the HBF was reduced by 45% (p< 0.05). Pretreatment with CGRP 8-37 (CGRP receptor antagonist) and NK-1 but not NK-2 nor NK-3 receptor antagonists significantly reduced the HABF by 43% (p< 0.05) and 25% (p< 0.05) as compared to the HABF value in the control HABR group. These findings support the hypothesis that the hepatic artery buffer response induced by reduction of the portal inflow to the liver by 90% is partially mediated by activation of capsaicin-sensitive sensory fibers in the liver, probably due to local tissue ischemia and hypoxia. The observed vasodilation in the vascular bed of the hepatic artery is due to stimulation of CGRP and NK-1 receptors.  相似文献   

15.
The mode of action of hepatic nerves on the metabolism of carbohydrates was studied in the rat liver perfused in situ. 1. Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein resulted in an increase of glucose and lactate output, an enhancement of phosphorylase a activity and a decrease of portal flow. 2. Sodium nitroprusside prevented the hemodynamic changes after nerve stimulation without affecting the metabolic alterations. 3. Phentolamine or an extracellular calcium level below 300 mumol x 1(-1) abolished both hemodynamic and metabolic changes after nerve stimulation, while propranolol or atropine were without effect. 4. Norepinephrine infusion mimicked nerve stimulation only at the highly unphysiological concentration of 0.1 microM; it was not effective at a concentration of 0.01 microM, which might be reached in the sinusoidal blood due to an overflow from intrahepatic synapses. The present results suggest that, in rat liver, glycogen breakdown is regulated by alpha-sympathetic nerves directly rather than indirectly via hemodynamic changes or via norepinephrine overflow.  相似文献   

16.
Six non-anaesthetized Large White pigs (mean body weight 59 +/- 1.7 kg) were fitted with permanent catheters in the portal vein, the brachiocephalic artery and the right hepatic vein and with electromagnetic flow probes around the portal vein and the hepatic artery. The animals were provided a basal none-fibre diet (diet A) alone or together with 6% guar gum (diet B) or 15% purified cellulose (diet C). The diets were given for 1 week and according to a replicated 3 x 3 latin-square design. On the last day of each adaptation period test meals of 800 g were given prior to blood sampling. The sampling was continued for 8 h. Guar gum strongly reduced the glucose absorption as well as the insulin, gastric inhibitory polypeptide (GIP) and insulin-like growth factor-1 (IGF-1) production. However, the reduction in peripheral blood insulin levels caused by guar gum was not associated with a change in hepatic insulin extraction. IGF-1 appeared to be strongly produced by the gut. The liver had a net uptake of the peptide. Ingestion of guar gum increased the hepatic extraction coefficient of gut produced IGF-1. Guar gum ingestion also appeared to decrease pancreatic glucagon secretion. Cellulose at the level consumed had very little effect on the parameters considered. It is suggested that the modulation of intestinal mechanisms by guar gum was sufficient to mediate the latter internal metabolic effects.  相似文献   

17.
To explore the possible role of gap junctions in neural regulation of hepatic glucose metabolism, the effects of hepatic nerve stimulation on metabolic and hemodynamic changes were examined in normal and regenerating rat liver which was perfused in situ at constant pressure via the portal vein with a medium containing 5 mM glucose, 2 mM lactate and 0.2 mM pyruvate. 1. The content of connexin 32, a major component of gap junctions in rat liver, decreased transiently to about 25% of the control level in regenerating liver 48-72 h after partial hepatectomy and recovered to normal by the 11th day after the operation. 2. In normal liver, electrical stimulation of the hepatic nerves (10 Hz, 20 V, 2 ms) and infusion of noradrenaline (1 microM) both increased glucose and lactate output and reduced perfusion flow. 3. In early stage of regenerating liver 48 h and 72 h after partial hepatectomy, the increase in glucose output in response to nerve stimulation was almost completely inhibited, whereas the change in lactate balance was partially suppressed and the reduction of flow rate was retained. The response of glucose output to nerve stimulation recovered by the 11th day after partial hepatectomy. In contrast, exogenous application of noradrenaline increased glucose output even in the early stage of regenerating liver. 4. The increase in noradrenaline overflow during hepatic nerve stimulation in the early stage of regenerating liver was approximately the same as in normal liver. Liver glycogen was sufficiently preserved in the early stage of regenerating liver. However, noradrenaline infusion could no more increase glucose output both in normal and in regenerating livers after 24 h of fasting that depleted liver glycogen. These results suggest that the impaired effects of sympathetic nerve stimulation on glucose metabolism observed in regenerating liver are derived neither from reduced release of noradrenaline nor from depletion of liver glycogen, but rather from transient reduction of gap junctions which assist signal propagation of the nerve action through intercellular communication in rat liver.  相似文献   

18.
M Iwai  T Shimazu 《Life sciences》1988,42(19):1833-1840
The effects of hypothalamic stimulation on experimental liver injury induced by carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN) were studied in rats, by measuring plasma alanine aminotransferase (ALT) activity as an index of acute liver injury. Electrical stimulation of the ventromedial hypothalamus (VMH) in CCl4-treated rats caused a marked increase in plasma ALT activity, accompanied by a significant decrease in ALT activity in the liver, although CCl4 treatment alone had no significant effect on plasma ALT activity. A similar effect of VMH stimulation on plasma ALT activity was observed in rats treated with DMN, another hepatotoxic chemical. No such exaggerated effect of VMH stimulation on plasma ALT activity was observed after stimulation of the lateral hypothalamic area (LH). Surgical sympathetic denervation of the liver greatly suppressed the increase in plasma ALT activity after CCl4 injection and VMH stimulation. Measurement of regional blood flow indicated that VMH stimulation did not produce a significant change in blood flow to the liver. These results suggest that the VMH is involved in the progress of chemically-induced liver injury through activation of the sympathetic nerve (hepatic nerves), possibly by affecting liver metabolism more than the blood flow change to the liver.  相似文献   

19.
In cats anesthetized with pentobarbital, a long-circuit technique was used to measure hepatic blood flow while portal flow was varied from 0 to 300% of normal in random steps. Arterial, portal, and hepatic venous blood samples were analyzed for ethanol concentrations during continuous infusion of ethanol (20 mumol/(min.kg body weight) into the reservoir. Measured values for logarithmic mean sinusoidal ethanol concentration, hepatic venous ethanol concentration, hepatic ethanol uptake, and ethanol extraction were compared with the values predicted by the parallel tube model for hepatic uptake of substrates using Vmax and Km determined in each cat at the start of the experiment. Measured and predicted values were very similar at all blood flows above 65% control, but statistical regression analysis indicated a small but highly significant deviation of the measured values from the predicted values. At low flows, measured values of logarithmic mean sinusoidal and hepatic venous concentrations markedly exceeded the predicted values in most cats. The results indicate that the parallel tube model, which assumes all sinusoids are identical and equally perfused, provides a useful approximation for the effects of hepatic blood flow on hepatic ethanol kinetics except at low flows. However, there appears to be a significant degree of sinusoidal heterogeneity that results in a better fit to the distributed model. Our previously reported data for hepatic galactose uptake followed a similar pattern when reanalyzed in this more rigorous way.  相似文献   

20.
Activation of hepatic nerves increases both hepatic glucose production (HGP) and hepatic arterial vasoconstriction, the latter best described by a decrease of hepatic arterial conductance (HAC). Because activation of canine hepatic nerves releases the neuropeptides galanin and neuropeptide Y (NPY) as well as the classical neurotransmitter norepinephrine (NE), we sought to determine the relative role of these neuropeptides vs. norepinephrine in mediating metabolic and vascular responses of the liver. We studied the effects of local exogenous infusions of galanin and NPY on HGP and HAC to predict the metabolic and vascular function of endogenously released neuropeptide. Galanin (n = 8) or NPY (n = 4) was infused with and without NE directly into the common hepatic artery of halothane-anesthetized dogs, and we measured changes in HGP and HAC. A low dose of exogenous galanin infused directly into the hepatic artery potentiated the HGP response to NE yet had little effect on HGP when infused alone. The same dose of galanin infused into a peripheral vein (n = 8) did not potentiate the HGP response to NE, suggesting that the locally infused galanin acted directly on the liver to modulate NE's metabolic action. In contrast, a large dose of exogenous NPY failed to influence HGP when infused either alone or in combination with NE. Finally, NPY, but not galanin, tended to decrease HAC when infused alone; neither neuropeptide potentiated the HAC response to NE. Therefore, both hepatic neuropeptides may contribute to the action of sympathetic nerves on liver metabolism and blood flow. It is likely that endogenous hepatic galanin acts directly on the liver to selectively modulate norepinephrine's metabolic action, whereas endogenous hepatic NPY acts independently of NE to cause vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号