首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat heart mitochondria oxidizing pyruvate (in the presence of 20% as much malate) took up nearly the amount of oxygen required for complete oxidation to CO2. Thus pyruvate, a physiological substrate of the citrate cycle, is oxidized through the entire cycle in these mitochondria, and they seem suitable for study of regulation of integrated mitochondrial energy transduction. By addition of graded amounts of hexokinase or pyruvate kinase to the suspending medium (in the presence of excess glucose or phosphoenolpyruvate), a wide range of steady-state values of the ATPADP concentration ratio was obtained. At a constant concentration of phosphate, the steady-state rate of oxygen uptake by rat heart mitochondria oxidizing pyruvate was a function of the adenylate energy charge or of the ATPADP ratio, and relatively independent of the absolute concentrations of these nucleotides. The oxygen uptake rates typically spanned a range of about 20-fold. At very high values of the ATPADP ratio, the rate of oxygen uptake is much lower than the “state 4” rate seen after added ADP has been phosphorylated. This result suggests that “state 4” respiration, at least in these freshly prepared mitochondria, measures the rate at which ADP is made available by ATPase activity, rather than indicating uncoupling of electron transport from phosphorylation. The concentration of orthophosphate affected the rate of oxygen uptake and the pattern of response to the ATPADP ratio or the energy charge, but the effects did not seem interpretable in terms of the mass-action expression for hydrolysis of ATP, (ATPADP) (Pi.  相似文献   

2.
The adenylate energy charge ([ATP] + 12[ADP])[0ATP+ADP+AMP] was measured in axenic batch cultures of Skeletonema costatum (Grev.) Cleve at 2°, 10°, 15°, 20°, 24° and 30°C. The results suggest that this eurythermal diatom is physiologically capable of adapting to the 28 °C range of temperature with little apparent difference in the potential energy available to the cell. In N-limited continuous cultures at 15 °C, the energy charge values were lower than those observed in batch culture by 0.2, implying nutrient stress may result in decreased intracellular chemical energy. The utilization of the adenylate energy charge as an indicator of physiological state is suggested.  相似文献   

3.
Adenylosuccinate synthase (EC 6.3.4.4.) (l-aspartate + GTP + IMPMg2+adenylosuccinate + GDP + Pi) is an important site for the regulation of adenylate biosynthesis. A partially purified preparation of the enzyme from Escherichia coli B showed feedback inhibition by ADP and AMP, weak positive response to the adenylate energy charge, and weak positive response to the mole fraction of GTP in the GTP + GDP pool. These responses seem to ensure that the synthesis of adenine nucleotides will be controlled appropriately in response to the level of end products and to the energy state of the cell, and to avoid the potential difficulties arising from the fact that the end products of this sequence and the indicators of the energy state of the cell are the same compounds.  相似文献   

4.
The role of acetaldehyde (AcH) in the ethanol-induced shift toward reduction of the cytosolic and mitochondrial free NAD+/free NADH ratios and its effect on the phosphorylation potential was investigated in livers of fed, intact rats given ethanol (1 g/kg ip). Calcium cyanamide, an inhibitor of mitochondrial aldehyde dehydrogenase, was administered to block predominantly intramitochondrial NADH production from AcH oxidation. Compared with ethanol alone, cyanamide almost totally reversed the elevation of the β-OH-butyrate/acetoacetate ratio but only slightly reduced the lactate/ pyruvate ratio, which was calculated to be in near equilibrium with the hepatic ethanol/ AcH ratio after cyanamide. Ethanol or cyanamide alone had no effect on ATP, ADP, or Pi, but together they significantly decreased the ATPADP · Pi ratio by increasing both ADP and Pi levels. No association between changes in the phosphorylation potential and the redox states was, however, observed. An ethanol-induced increase in AMP was abolished by cyanamide. The results demonstrate that the effect of ethanol on the mitochondrial redox state requires active AcH oxidation and suggest that moderate AcH accumulation likely to occur during alcohol-aversive drug treatment significantly lowers the cellular phosphorylation potential.  相似文献   

5.
The control of oxidative phosphorylation by the extramitochondrial [ATP][ADP] ratio and [Pi] was investigated by incubations of isolated mitochondria with an ADP regenerating system and by a new perifusion technique using glass filters for immobilization of mitochondria. With mitochondria from different sources oxidizing different substrates and with both techniques, similar results were obtained. Changes of the extramitochondrial [ATP][ADP] ratio from about 100 to 5 transfer mitochondria from the resting state (state 4) to the fully active state (state 3). The importance of the adenine nucleotide translocator in this transition was demonstrated by the influence of its specific inhibitor carboxyatractyloside. The sensitivity to the inhibitor was more pronounced in states with high [ATP][ADP] ratios than in the fully active state. In the hexokinase-glucose system the action of the inhibitor caused a transition to a new steady state, where a decreased [ATP][ADP] ratio overcomes the inhibition. Thus, a partial inhibition of the translocator shifted the control characteristics to lower [ATP][ADP] ratios. When the concentration of inorganic phosphate was decreased, the main effect was a reduction of the maximum rate of oxidative phosphorylation (i.e., in state 3), whereas the [ATP][ADP] sensitive range was not altered. This effect is caused by changes in the intramitochondrial phosphorylation potential. Furthermore, this indicates that the kinetic properties of the adenine nucleotide translocator prevent a simple equilibration of the phosphorylation potential across the inner membrane. This is also demonstrated by the fact that the extramitochondrial formation of glucose-6-phosphate and the intramitochondrial synthesis of citrulline compete for ATP.  相似文献   

6.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

7.
Y. Kobayashi  S. Köster  U. Heber 《BBA》1982,682(1):44-54
Scattering of green light and chlorophyll fluorescence by spinach leaves kept in a stream of air or nitrogen were compared with leaf adenylate levels during illumination with blue, red or far-red light. Energy charge and ATP-ADP ratios exhibited considerable variability in different leaves both in the dark and in the light. Variability is explained by different possible states of the reaction oxidizing triose phosphate or reducing 3-phosphoglycerate. Except when oxygen levels were low, there was an inverse relationship between light scattering and chlorophyll fluorescence during illumination with blue or red light. When CO2 was added to a stream of CO2-free air, chlorophyll fluorescence increased, sometimes after a transient decrease, and both light scattering and leaf ATPADP ratios decreased. Similar observations were made when air was replaced by nitrogen under blue or high-intensity red light. Under these conditions, over-reduction caused inhibition of electron transport and phosphorylation in chloroplasts. However, when air was replaced by nitrogen during illumination with low-intensity red light or far-red light, light scattering increased instead of decreasing. Under these light conditions, ATPADP ratios were maintained in the light. They decreased drastically only after darkening. Although ATPADP ratios responded faster than light scattering or the slow secondary decline of chlorophyll fluorescence due to illumination, it appeared that in the steady state, light scattering and chlorophyll fluorescence are useful indicators of the phosphorylation state of the leaf adenylate system at least under aerobic conditions, when chloroplast and extrachloroplast adenylate systems can effectively communicate.  相似文献   

8.
Investigations were conducted comparing the efficiency of adenine nucleotide extraction from bacteria, unicellular algae, invertebrates (copepods, isopods and polychaetes), and beach sand using boiling buffers and cold acid extraction procedures. Cellular levels of ATP, ADP, and AMP obtained by these procedures were used to calculate the adenylate energy charge ratio (ECA = [ATP] + 12 [ADP]/[ATP] + [ADP] + [AMP]). Although both extraction procedures efficiently extract ATP from unicellular micro-organisms, the results with multicells and beach sand indicate that the cold acid procedure preserves a greater percentage of the total adenine nucleotides ([AT] = [ATP] + [ADP] + [AMP]) in the form of ATP, resulting in higher energy charge ratios. There were relatively large losses of ATP when multicellular organisms were extracted in boiling buffers. These data suggest that ATP hydrolysis may be important in certain fluid-solid mixtures, and also adds experimental support to the thermal gradient hypothesis.The C/ATP ratios calculated from these data indicate that multicellular organisms have C/ATP ratios < 100, as compared with the 250 ratio commonly found in micro-organisms. These results are discussed in terms of the proportion of structural (non-living) carbon vs protoplasm (living) carbon within each of these groups of organisms, as well as the relative intracellular levels of non-adenine nucleotide triphosphates. These differences in the C/ATP ratios must be considered whenever ATP measurements are used for biomass determinations.  相似文献   

9.
31P-NMR has been used to quantify inorganic phosphate (Pi) and high-energy phosphates in the isolated, functioning perfused rat kidney, while monitoring oxygen consumption, glomerular filtration rate and sodium reabsorption. Compared with enzymatic analysis, 100% of ATP, but only 25% of ADP and 27% of Pi are visible to NMR. This is indicative that a large proportion of both ADP and Pi are bound in the intact kidney. NMR is measuring free, and therefore probably cytosolic concentrations of these metabolites. ATP synthesis rate, measured by saturation transfer NMR shows the P:O ratio of 2.45 for the intact kidney. This is close to the theoretical value, suggesting the NMR visible pool is that which is involved in oxidative phosphorylation. The energy cost of Na transport, calculated from the theoretical Na:ATP of 3.0 exceeded the measured rate of ATP synthesis. Instead, Na:ATP for active transport in the perfused kidney was 12. Since the phosphorylation potential ([ATP][ADP]×[Pi]) by NMR was 10 000 M?1, the free-energy of ATP hydrolysis was 52 kJ/mol. Using this figure, the rate of ATP hydrolysis observed could fully account for the observed rate of sodium reabsorption.  相似文献   

10.
The Crabtree effect (inhibition of respiration by glycolysis) is observed in cells with approximately equal glycolytic and respiratory capacities for ATP synthesis. Addition of glucose to aerobic suspensions of glucose-starved cells (Sarcoma 180 ascites tumor cells) causes a burst of respiration and lactate production due to ATP utilization for glucose phosphorylation by hexokinase and phosphofructokinase. This burst of activity is followed by inhibition of both respiration and glycolysis, the former to below the value before glucose addition (Crabtree effect). Both the respiratory rate and the glycolytic flux appear to be regulated by the cytosolic [ATP][ADP][Pi] albeit by completely different mechanisms. Respiration is regulated by the free energy of hydrolysis of ATP, such that the rate increases as the [ATP][ADP][Pi] decreases and decreases as the [ATP][ADP][Pi] increases. The regulatory enzymes of glycolysis are activated by ADP (AMP) and Pi and inhibited by ATP. Thus both respiration and glycolysis increase or decrease as the [ATP][ADP][Pi] decreases or increases. The parallel regulation of both ATP-producing pathways by this common metabolite ratio is consistent with the cytoplasmic [ATP][ADP][Pi] being an important determinant of homeostatic regulation of cellular energy metabolism.  相似文献   

11.
Addition of ribose-5-phosphate to intact spinach chloroplasts in the absence of added Pi resulted in a conversion of part of the Benson-Calvin cycle into a linear sequence so that triose phosphate accumulated during CO2 fixation stoichiometrically with the O2 evolved (triose phosphate / O2 ratio was 2.0). The fortunate consequence of this effect is that the ATP2e ratio may be calculated from the 3-phosphoglycerate and triose phosphate accumulated and the O2 evolved. In this way the ATP2e ratio was shown to be 2.0, with cyclic or pseudocyclic phosphorylation contributing less than 9% to the total phosphorylation.  相似文献   

12.
(1) In isolated chloroplasts (class B) electron flow is controlled mainly by the intrathylakoid pH (pHin). A decrease in pHin due to the light-driven injection of protons inside the thylakoid leads to the retardation of electron flow between two photosystems. This effect can be abolished by uncouplers or under photophosphorylation conditions (addition of Mg2+-ADP with Pi); Mg2+-ATP does not influence the steady-state rate of electron flow, (2) The steady-state pH difference, ΔpH, across the thylakoid membrane was estimated from quantitative analysis of the rate of P-700+ reduction. In chloroplasts, without adding Mg2+-ADP, ΔpH increases from 1.6 to 3.2 as the external pH rises from 6 to 9.5. Under the photophosphorylation conditions, ΔpH decreases showing a minimum at the external pH 7.5 (ΔpH ? 0.5–1.0). (3) The value of photosynthetic control, K, measured as the ratio of the steady-state rates of P-700+ reduction in the presence of Mg2+-ADP (with Pi) and without adding Mg2+-ADP is dependent on external pH variations, showing a maximum value of K ? 3.5 at pHout 7.5. This pH dependence coincides with that of the ADP-stimulated ΔpH decrease. (4) Experiments with spin labels provide evidence that the light-induced changes in the thylakoid membrane are sensitive to the addition of uncouplers and are affected only slightly by the addition of Mg2+-ADP and Pi.  相似文献   

13.
Oxidative phosphorylation was measured in isolated energy-transducing membranes of the thermophilic cyanobacterium Mastigocladus laminosus with NADH-mediated electron transport. This dark phosphorylation was similar to photophosphorylation in its sensitivity to uncouplers and energy-transfer inhibitors. However, photophosphorylation was 20- to 50-times more active than oxidative phosphorylation. The PO ratio of oxidative phosphorylation was about 0.2. Besides oxidative phosphorylation, adenylate kinase- and ADP-Pi exchange activity were measured in the dark. The ADP-Pi exchange reaction was identified as polynucleotide phosphorylase.  相似文献   

14.
Chinese hamster fibroblasts in monolayer culture (Don-C cell line) were synchronized by selective detachment of metaphase cells after brief treatment with colcemid. Replicate monolayer cultures were harvested at intervals after synchronization and ethanolic extracts were prepared for the determination of adenine ribonucleotides with the luciferin-luciferase assay. The level of ATP increased approx. 145% during the cell cycle, with the most rapid increase occurring during the G1 phase. One hour after synchronization (early G 1 phase), 1.3 nmoles of ATP106 cells were observed; a maximum of 3.2 nmoles of ATP106 cells was reached at 12 h (G 2 phase). The adenylate energy charge, (ATP + 12ADP)/(ATP + ADP + AMP) was lowest during the G 1 phase (0.7) and increased to 0.9 during the late S and G 2 phase. A slight decrease of energy charge was observed during the second mitosis.  相似文献   

15.
The cytosolic phosphate potential was estimated in isolated rat liver parenchymal cells incubated with various gluconeogenic substrates. The value of the cytosolic [ATP][ADP][Pi] ratio was either estimated directly from measurements of ATP, ADP and Pi after digitonin fractionation of the cells, or calculated by the metabolite indicator method. When cells were incubated with lactate, pyruvate or alanine so that net flux through the indicator enzymes was in the gluconeogenic direction, there was excellent agreement between the values obtained by the two methods over a wide range of fluxes. However, when the cells were incubated with substrates that could be converted both to glucose and to lactate so that net flux through the indicator enzymes was in the glycolytic direction, a large difference in the values of the cytosolic [ATP]([ADP][Pi]) ratio as derived by the two methods was observed. It is concluded that the reaction catalysed by glyceraldehyde-3-phosphate dehydrogenase plus 3-phosphoglycerate kinase is out of equilibrium when flux through the reaction is in the glycolytic direction, and that use of the metabolite indicator method for the calculation of the cytosolic phosphate potential under these conditions leads to erroneous values.  相似文献   

16.
Aerobic incubation of 6-day Nippostrongylus brasiliensis worms in the presence of PGE1 at 1000 ngml of medium affected the energy status of the parasite. Both adenylate energy charge and ATP/ADP ratio were depressed. PGE1 either reduced the rate of phosphorylation or increased the rate of utilization of high energy phosphate bonds, or both. Addition of PGE1 to the culture medium reduced glucose uptake by the parasite, increased internal lactate and lactate output, decreased internal malate and increased the internal concentration of succinate. Several of these effects of PGE1 on metabolism were also exhibited by worms in vitro under anaerobic conditions. The action of PGE1 on worms in vitro adversely affected their ability to re-establish in rats and caused structural damage.  相似文献   

17.
The oxygen dependence of cellular energy metabolism.   总被引:14,自引:0,他引:14  
Suspensions of cultured C 1300 neuroblastoma cells, sarcoma 180 ascites tumor cells, and Tetrahymena pyriformis cells were used to study the oxygen dependence of cellular energy metabolism. Cellular respiration was found to be almost independent of oxygen tension to values of less than 20 μm with an apparent Km for oxygen of less than 1 μm. In contrast, the reduction of mitochondrial cytochrome c was found to be dependent on oxygen tension at all values from 240 μm downward. Oxygen dependence was also observed in terms of cellular energy metabolism expressed as adenosine triphosphate and adenosine diphosphate concentrations. These data provide direct evidence that in intact cells mitochondrial oxidative phosphorylation is oxygen dependent throughout the physiological range of oxygen tension (air saturation and below). The respiratory rate is maintained constant when the oxygen tension is lowered by decreasing values of the cytosolic [ATP][ADP][Pi] and intramitochondrial [NAD]+][NADH] because these regulatory parameters adjust to maintain a constant rate of ATP synthesis. The lack of oxygen dependence in the respiratory rate means that the rate of cellular ATP utilization is essentially oxygen independent until the mitochondria can no longer synthesize ATP at the required rate and [ATP][ADP][Pi].  相似文献   

18.
Adenylate-pool composition, energy charge, and nitrogenase activity were examined in isolated heterocysts from Anabaena variabilis (ATCC 29413). ATP formation was detected as a light- or oxygen-induced increase in ATP concentration. No cofactors or substrates had to be added for photophosphorylation to occur, whereas oxidative phosphorylation was dependent on hydrogen and oxygen (Knallgas reaction). The increase in ATP concentration was reflected by a decrease in AMP concentration, accompanied by small changes in ADP levels. Thus, a regulation of the adenylate pool by a myokinase (adenylate kinase) has to be assumed. Upon dark-light transitions, the energy charge in heterocysts increased from values below 0.4 to values approaching 0.8. High energy-charge values, reached in the light only, allowed for high rates of acetylene reduction in the presence of hydrogen. The increase in the energy charge in the dark to approx. 0.64 by addition of oxygen (5% (vv) in the presence of hydrogen) resulted in low nitrogenase activities, generally not exceeding 1–3% of the light-induced rates. In the dark, oxygen concentrations above 10% were inhibitory to both ATP formation and acetylene reduction. Increasing light intensities led to a steep increase in energy charge followed by an increase in nitrogenase activity. Plotting enzyme activity versus energy charge, a nonlinear, asymptotic relationship was observed.  相似文献   

19.
The activity of the protein kinase that phosphorylates the light-harvesting chlorophyll-protein of Photosystem II (LHCP) has been investigated in intact chloroplasts isolated from maize mesophyll cells. Measurements of 32P incorporation into LHCP, ATP concentration, ATPADP ratio, ΔpH, chlorophyll fluorescence and oxygen evolution were made in the presence of different metabolic substrates. Without added substrate a high level of LHCP phosphorylation was observed which was suppressed by addition of oxaloacetate or phosphoglycerate but stimulated by pyruvate. Whereas no correlation was observed between LHCP phosphorylation and adenylate status, a clear effect of redox state on protein kinase activity was observed. A correlation between a highly reduced electron-transfer chain (produced under conditions which favour cyclic electron flow) and the maximum level of protein phosphorylation was observed. The regulation of kinase activity and its dependence on electron transfer and carbon assimilation are discussed.  相似文献   

20.
S. Köster  U. Heber 《BBA》1982,680(1):88-94
Upon illumination of suspensions of intact chloroplasts, fluorescence of 9-aminoacridine was quenched, light scattering was increased, chlorophyll fluorescence was decreased after an initial increase, and chloroplast ATPADP ratios were increased. The response of 9-aminoacridine fluorescence quenching and light scattering to light intensity, anaerobiosis and inhibition of electron transport by DCMU was similar to that shown by chloroplast ATPADP ratios. It is discussed under what conditions 9-aminoacridine fluorescence quenching or light scattering can be used to monitor changes in the phosphorylation state of the chloroplast adenylate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号