首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments reported in the preceding paper [4] had shown that host-cell reactivation (HCR) of UV-irradiated phage T1 in excision-repair proficient Escherichia coli cells is inhibited by superinfection with phage T5. Theoretical considerations have led to predictions concerning the dependence of repair inhibition on the multiplicity of superinfecting T5 phage and on the UV fluence to which they were exposed. These predictions have been supported by experimental results described in this paper. The fluence dependence permitted calculation of the relative UV sensitivity of the gene function responsible for repair inhibition; it was found to be about 2.3% that of the plaque-forming ability of phage T5.The T5-inhibitable step in excision repair occurs early in the infective cycle of T1. Furthermore, experiments involving the presence of 400 μg/ml chloramphenicol showed that HCR inhibition of T1 is caused by a protein produced after the FST segment of T5 (i.e. the first 8% of the T5 genome) has entered the host cell. A previously described minor T1 recovery process, occuring in both excision-repair-proficient and -deficient host cells, is inhibited by T5 infection due to a different substance, which is most likely associated with the “second-step-transfer” region of T5 DNA (involving the remainder of the genome). Superinfection with T4ν1 phage resulted in HCR inhibition of T1, resembling that observed after T5 superinfection. The discussion of these results suggests that inhibition of the bacterial excision repair system by T5 or T4 infection occurs at the level of UV-endonucleolytic incision, and that lack of HCR both in T-even phages and in T5 can be explained in the same manner.  相似文献   

2.
W Harm 《Mutation research》1973,17(2):163-176
Soaked seeds of Vicia faba were irradiated with 800 or 400 R, or two 400-R exposures, both with VAC (vacuum) but one with a concomitant treatment of CHM (cycloheximide) (I μg/ml). The chromosome aberration yields from each regimen varied with fixation time such that a unique and characteristic aberration yield for each regimen relative to the others was not obtained. Were single fixations employed one could obtain yields which would indicate no, some, or maximum repair. A single fixation would lead to an incorrect estimation of chromosome damage repair.  相似文献   

3.
Summary The survival of UV-irradiated cholera phage e5 was found to increase when the host cells, Vibrio cholerae MAK757, were exposed to a low dose of UV irradiation before phage infection (Weigle reactivation), indicating the existence of a UV-inducible DNA repair pathway (SOS repair) in V. cholerae MAK757. The induction signal generated by UV irradiation was transient in nature and lasted about 20–30 min at 37°C. Maximal weigle reactivation of the phage was obtained when the host cells were irradiated with a UV dose of 16 J/m2. V. cholerae MAK757 was also found to possess efficient photoreactivation and host cell reactivation of UV-damaged DNA in phage e5.  相似文献   

4.
Survival of UV-irradiated phage λ is increased when the host is lysogenic for a homologous heteroimmune prophage such as λimm434 (prophage reactivation). Survival can also be increased by UV-irradiating slightly the non-lysogenic host (UV reactivation).Experiments on prophage reactivation were aimed at evaluating, in this recombination process, the respective roles of phage and bacterial genes as well as that of the extent of homology between phage and prophage.To test whether UV reactivation was dependent upon recombination between the UV-damaged phage and cellular DNAs, lysogenic host cells were employed. Such hosts had thus as much DNA homologous to the infecting phage as can be attained. Therefore, if recombination between phage and host DNAs was involved in this repair process, it could clearly be evidenced.By using unexposed or UV-exposed host cells of the same type, prophage reactivation and UV reactivation could be compared in the same genetic background.The following results were obtained: (1) Prophage reactivation is strongly decreased in a host carrying recA mutations but quite unaffected by mutation lex-I known to prevent UV reactivation; (2) In the absence of the recA+ function, the red+ but not the int+ function can substitute for recA+ to produce prophage reactivation, although less efficiently; (3) Prophage reactivation is dependent upon the number of prophages in the cell and upon their degree of homology to the infecting phage. The presence in a recA host of two prophages either in cis (on the chromosome) or in trans (on the chromosome and on an episome) increases the efficiency of prophage reactivation; (4) Upon prophage reactivation there is a high rate of recombination between phage and prophage but no phage mutagenesis; (5) The rate of recombination between phage and prophage decreases if the host has been UV-irradiated whereas the overall efficiency of repair is increased. Under these conditions UV reactivation of the phage occurs as in a non-lysogen, as attested by the high rate of mutagenesis of the restored phage.These results demonstrate that UV reactivation is certainty not dependent upon recombination between two pre-existing DNA duplexes. The hypothesis is offered that UV reactivation involves a repair mechanism different from excision and recombination repair processes.  相似文献   

5.
6.
Zusammenfassung Es wird beim Phagen T4Bo reine Schutzwirkung von Cysteamin gegenüber den nach Einbau von 5-Bromuracil in die DNS biologisch zusätzlich beobachtbaren UV-Strahlenschäden beschrieben. Bei BU-Phagen, nicht aber bei normalen Phagen und auch nicht bei BU-Phagen bestrahlt in Anwesenheit von 10-2 m Cysteamin, wird eine Zerstörung von Desoxyribose in der DNS gemessen. Der Mechanismus, der zum Abbau von DNS-Pentose führt bzw. die Reaktionen, die in Anwesenheit eines Radikalfängers den Schutzeffekt bewirken, werden im Rahmen einer Arbeitshypothese diskutiert. Da bei den T-Phagen die Gruppe der näher untersuchten enzymatischen Reaktivierungsmechanismen, nämlich Photo-, Wirtszell- und u-Gen-Reaktivierung, hinsichtlich des BU-Phänomens gemeinsame Merkmale zeigt, d. h. Blockierung durch BU und Aufhebung des Blocks bei Bestrahlung in Anwesenheit von Cysteamin, liegt die Annahme nahe, daß Schäden an der Desoxyribose der DNS-Helix für die Blockierung der enzymatischen Reaktivierungsschritte verantwortlich sind.  相似文献   

7.
8.
During the last 10 years, reinfusion of UV-irradiated blood has been rediscovered again as a therapeutic method suitable in the treatment of a variety of diseases. The described series of model experiments on rabbits confirm its beneficial effects in the treatment of staphylococcal infection: the control animals reinfused blood not exposed to UV radiation died all within 48 hours after injected with a suspension of live Staphylococcus aureus culture; all rabbits reinfused UV-irradiated blood (2 ml per kg body weight) survived the whole period of observation (30 days); reinfusion of UV-irradiated blood in a volume reduced to 1 ml.kg-1 body weight prolonged the animals' life-span to 96 or 120 hours.  相似文献   

9.
10.
Summary Host-cell reactivation (HCR) and UV-reactivation (UVR) were studied in phage T1, T3 and , using as host bacteriaE. coli B, C, andK12S, as well as their non-hostreactivating mutantsB s–1 (Ellison et al. 1960),C syn (Rörsch et al. 1962), andK12S hcr . The experiments gave further support to the idea that HCR is an enzymatic process. It repairs about 80 to 90 percent of otherwise lethal UV-lesions not only in phage DNA, but also in bacterial DNA. Thehcr mutant isolated fromK12S for the purpose of this investigation, and thesyn mutant of ColiC show a very small extent of HCR; they are not completely deficient for the HCR-enzyme.A correlation exists between the occurrence of HCR and UVR. UVR is absent in those cases where no HCR is observed. In systems with residual HCR-activity (hcr andsyn cells) UVR is less pronounced and has its maximum at lower UV-doses than in systems with full HCR-activity. UVR occurs also in unirradiated host-reactivating cells, if a large number of additional UV-lesions is introduced by means of superinfecting homologous phage. This effect is not observed in non-hostreactivating strains. The hypothesis is discussed that UVR is not a specific repair phenomenon by itself, but is the result of inhibition of cellular processes tending to decrease the survival.With 7 Figures in the TextThe work was supported by the Deutsche Forschungsgemeinschaft  相似文献   

11.
Walter Harm   《Mutation research》1973,20(3):301-311
The survival of UV-irradiated phage T1 is much lower in excision repair-deficient than in excision repair-proficient E. coli cells, due to lack of “host cell reactivation” (HCR). An additional decrease in phage survival occurs when repair-deficient (HCR) host cells have been exposed to UV doses from 3000–10 000 erg mm−2 of 254 nm UV-radiation prior to infection. The observed effect is attributed to loss of a minor phage recovery process, which requires neither the bacterial excision repair nor the bacterial REC repair system. This type of recovery is little affected by caffeine or acriflavine at concentrations that preclude HCR completely. Its full inhibition by UV-irradiation of the cells requires an approximately 8 times larger dose than complete inhibition of HCR.

In heavily preirradiated cells, the T1 burst size is extremely small and multiplicity reactivation is considerably less extensive than in unirradiated cells. Presumably the survival of singly infecting T1 in these cells reflects absence of any type of repair. The observed phage sensitivity and shape of the curve are compatible with the expectation for completely repairless conditions. The mechanism underlying the minor recovery is not known; theoretical considerations make a phage REC repair mechanism seem likely.  相似文献   


12.
13.
Purified T7 phage, treated with methyl methanesulfonate, was assayed on four Escherichia coli K12 host cells: (1) AB1157, wild-type; (2) PK432-1, lacking 3-methyladenine-DNA glycosylase (tag); (3) NH5016, lacking apurinic endonuclease VI (xthA); (4) p3478, lacking DNA polymerase I (polA), the latter three strains being deficient in enzymes of the base excision repair pathway. For inactivation measured immediately after alkylation, phage survival was lowest on strains PK432-1 and p3478; for delayed inactivation, measured after partial depurination of alkylated phage, survival was much lower on strain p3478 than on PK432-1. These results demonstrate the important role played by 3-methyladenine-DNA glycosylase in the survival of methylated T7 phage. Quantitative analysis of the data, using the results of Verly et al. (Verly, W.G., Crine, P., Bannon, P. and Forget, A. (1974) Biochim. Biophys. Acta 349, 204–213) to correlate the dose with the number of methyl groups introduced into phage DNA, revealed that 5–10 3-methyladenine residues per T7 DNA constituted an inactivation hit for the tag mutant. Thus, 3-methyladenine may be as toxic a lesion as an apurinic site.  相似文献   

14.
A physicochemical study was made of the replication and transmission of UV-irradiated T4 genomes. The data presented in this paper justify the following conclusions. (i) For both low and high multiplicity of infection there was abundant replication from UV-irradiated parental templates. It exceeded by far the efficiency predicted by the hypothesis that a single lethal hit completely prevents replication of the killed phage DNA: i.e., some dead phage particles must replicate parts of thier DNA. (ii) Replication of the UV-irradiated DNA was repetitive as shown by density reversal experiments. (iii) Newly synthesized progeny DNA originating from UV-irradiated templates appeared as significantly shorter segments of the genomes than progeny DNA produced from non-UV-irradiated templates. A good correlation existed between the number of UV hits and the number of random cuts that would be needed to reduce replication fragments to the length observed. (iv) The contribution of UV-irradiated parental DNA among progeny phage in multiplicity reactivation was disposed in shorter subunits than was the DNA from unirradiated parental phage. It is important to emphasize that it was mainly in the form of replicative hybrid. These conclusions appear to justify excluding interparental recombination as a prerequisite for multiplicity reactivation. They lead directly to some form of partial replica hypothesis for multiplicity reactivation.  相似文献   

15.
G Johnson  W Widner  W N Xin    M Feiss 《Journal of bacteriology》1991,173(9):2733-2738
Bacteriophage lambda development is blocked in cells carrying a plasmid that expresses the terminase genes of phage 21. The interference is caused by the small subunit of phage 21 terminase, gp1. Mutants of lambda able to form plaques in the presence of gp1 include sti mutants. One such mutation, sti30, is an A. T-to-G.C transition mutation at base pair 184 on the lambda chromosome. The sti30 mutation extends the length of the ribosome-binding sequence of the Nul gene that is complementary to the 3' end of the 16S rRNA from GGA to GGAG. The sti30 mutation causes a approximately 50-fold increase in the level of expression of a Nul-lacZ reporter gene, indicating that the sti30 mutation overcomes the gp1 inhibition by increasing the level of expression of gpNul. Although the Nul and A genes of lambda overlap, the sti30 mutation has little effect on the level of gpA expression, indicating that translational coupling does not occur.  相似文献   

16.
Summary The survival of ultraviolet light (UV) damaged single-stranded DNA bacteriophage f1 is increased when the Escherichia coli host is irradiated with UV prior to infection. This repair, called Weigle reactivation, is multiplicity independent and is absent in recA and in lexA mutants. The function of the recA-lexA repair system needed is repair and not recombination, as demonstrated by the absence of Weigle reactivation in mutants that are recombination proficient but defective in repair of double-stranded DNA. Weigle reactivation of f1 requires high levels of the recA protein, and in addition activation of recA or another protein. This activation can be produced by UV irradiation, or by the tif-1 allele of recA together with the spr allele of lexA. Mutagenesis of f1 has the same requirements as W-reactivation, and in addition requires UV irradiation of the phage.  相似文献   

17.
The titre of infectious phage particles in phage lysates stored at +4°C gradually fell. The inactivated particles retained their capacity for adsorption to male cell receptors, however, competing for the latter with infectious particles and thus protecting the cells from infection. The upper limit of the infected cell fraction in a F+ population fell abruptly with aging of the lysate even when the input of p.f.u. was kept constant. F2 particles inactivated by u.v. radiation behaved similarly to particles inactivated spontaneously during storage of the lysate at +4°C.  相似文献   

18.
An enhanced reactivation of UV-irradiated adenovirus type 2 (Ad 2) was detected following irradiation of the host cells with γ-rays prior to infection. Non-irradiated and γ-irradiated normal human fibroblasts were infected immediately after irradiation with either non-irradiated or UV-irradiated Ad 2. At 48h after infection, cultures were examined by indirect immunofluorescence to determine the number cells in which the viral function of viral structural antigen (Vag) was expressed. Pre-irradiation of cells with 1 krad resulted in a 2–3-fold increase in the survival of this viral function following different UV doses to the virus up to 1.75 × 103 J/m2. For a fixed UV dose of 1.0 × 103 J/m2 to the virus this enhancement increased with preirradiation dose to the cells up to a maximum factor of 2–3 for a dose of 1 krad. An examination of Vag expression at various times after infection indicates that pre-irradiation of the cells with γ-rays prior to infection with UV-irradiated virus leads to an earlier onset and/or increased rate of Vag synthesis. This enhancement of Vag production from a UV-damaged template may result from an inducible DNA-repair mechanism in human fibroblasts which may or may not be error-prone.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号