首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterium Bacillus thuringiensis (Bt) Berliner and the braconid wasp Habrobracon hebetor Say are valuable biocontrol agents attacking larval stages of Helicoverpa armigera (Hübner). Little information is available regarding combination of these biocontrol agents during integrated management of H. armigera. To address this knowledge gap, we document sublethal effects of Bacillus thuringiensis var. kurstaki (Btk) on the H. hebetor attacking H. armigera larvae infected with Btk. The results revealed that the duration of different life stages and fecundity of H. hebetor was significantly affected by sublethal treatments with Btk. We also present data supporting that sublethal concentrations of Btk could adversely affect life table parameters of H. hebetor. Sublethal treatments reduced the net reproductive rate (R 0) and there were also significant differences among the values of this parameter at all treatments tested. The intrinsic (r m ) and finite (λ) rates of increase were also significantly lower in parasitoid wasps reared on the treated larvae of H. armigera compared to control. These findings will be useful to develop appropriate strategies for assessing the risks of Btk to the parasitoids and safe deployment of both organisms in integrated pest management programs for sustainable crop production.  相似文献   

2.
The cotton bollworm Helicoverpa armigera is one of the most devastating insect pests. A set of protease enzymes allows this species to feed on different host plant species. Control measures in agriculture often involve the application of the pathogenic bacterium Bacillus thuringiensis subsp. kurstaki (Btk). In the present study, the effects of sublethal Btk doses are evaluated with respect to the food utilization indices and proteolytic activities of Helicoverpa armigera. Accordingly, the H. armigera larvae are fed with artificial diet containing sublethal Btk doses (LC5, LC10, LC15, LC20 and LC25) and a Btk‐free diet as control. All but one of the food utilization indices we measured is observed to increase significantly with increasing Btk doses. By contrast, the specific activity of total protease, chymotrypsin and elastase enzymes decrease significantly with an increasing Btk concentration. We conclude that Btk was not toxic to H. armigera larvae and any damage that it causes can be compensated for by H. armigera larvae via various mechanisms. In conclusion, increased nutritional indices in the larvae fed with Btk diet represent an important issue that needs to be considered to avoid the pest establishing Bt resistant populations. Meanwhile, the lack of effect of Btk sublethal concentrations on trypsin enzyme specific activity can bolster this challenge.  相似文献   

3.
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant ‘pyramids’ producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross‐resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double‐stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH‐binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt‐resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt‐resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non‐transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone.  相似文献   

4.
Helicoverpa armigera (Hübner), the major target pest of transgenic Bacillus thuringiensis (Bt) cotton, remains susceptible to Bt cotton in China at present. Behavioural avoidance by ovipositing females might lead to reduced exposure to Bt cotton and minimize selection for physiological resistance. We examined the behavioural responses of H. armigera to Bt and non‐Bt cottons to determine whether behavioural avoidance to Bt cotton may be present. In oviposition choice tests, the number of eggs on non‐Bt cotton plants was significantly higher than on Bt cotton plants. Similarly, in no‐choice tests, Bt cotton plants attracted significantly fewer eggs compared with non‐Bt cotton plants. H. armigera neonates showed higher dispersal and lower establishment on Bt cotton than on non‐Bt cotton. First instars were found to feed consistently on non‐Bt cotton leaves, creating large feeding holes, but only produced tiny feeding holes on Bt cotton leaves. The H. armigera population used in this study showed avoidance of oviposition and feeding on Bt cotton. Our results provide important insights into one possible mechanism underlying the durability of Bt cotton resistance and may be useful for improving strategies to sustain the effectiveness of Bt crops.  相似文献   

5.
The interactions between plants and insects play an important role in ecosystems. Climate change and cropping patterns can affect herbivorous pest insect dynamics. Understanding the reasons for population fluctuations can help improve integrated pest management strategies. Here, a 25‐year dataset on climate, cropping planting structure, and the population dynamics of cotton bollworms (Helicoverpa armigera) from Bachu County, south Xinjiang, China, was analyzed to assess the effects of changes in climate and crop planting structure on the population dynamics of H. armigera. The three generations of H. armigera showed increasing trends in population size with climate warming, especially in the third generation. The relative abundances of the first and second generations decreased, but that of the third generation increased. Rising temperature and precipitation produced different impacts on the development of different generations. The population numbers of H. armigera increased with the increase in the non‐Bacillus thuringiensis (Bt) cotton‐planted area. Asynchrony of abrupt changes existed among climate change, crop flowering dates, and the phenology of H. armigera moths. The asynchronous responses in crop flowering dates and phenology of H. armigera to climate warming would expand in the future. The primary factors affecting the first, second, and third generations of moths were Tmean in June, the last appearance date of the second generation of moths, and the duration of the third generation of moths, respectively. To reduce the harm to crops caused by H. armigera, Bt cotton should be widely planted.  相似文献   

6.
Cotton bollworm (Helicoverpa armigera) is one of the most serious insect pests of cotton. Transgenic cotton expressing Cry toxins derived from a soil bacterium, Bacillus thuringiensis (Bt), has been produced to target this pest. Bt cotton has been widely planted around the world, and this has resulted in efficient control of bollworm populations with reduced use of synthetic insecticides. However, evolution of resistance by this pest threatens the continued success of Bt cotton. To date, no field populations of bollworm have evolved significant levels of resistance; however, several laboratory-selected Cry-resistant strains of H. armigera have been obtained, which suggests that bollworm has the capacity to evolve resistance to Bt. The development of resistance to Bt is of great concern, and there is a vast body of research in this area aimed at ensuring the continued success of Bt cotton. Here, we review studies on the evolution of Bt resistance in H. armigera, focusing on the biochemical and molecular basis of Bt resistance. We also discuss resistance management strategies, and monitoring programs implemented in China, Australia, and India.  相似文献   

7.
Studies on the susceptibility of F1 neonates of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) collected from chickpea in Delhi and cotton in Punjab, Haryana and Rajasthan in northern India, to Bacillus thuringiensis ssp. kurstaki HD‐73, and the impact of host crop diets on insect susceptibility, were carried out by diet incorporation bioassays. The susceptibility of F1 neonates of H. armigera to Bacillus thuringiensis ssp. kurstaki HD‐73 ranged from twofold (LC50 96 h, 84.5–164.2 µg (ai) l?1) for chickpea to about fivefold (LC50 96 h, 51.1–247.7 µg (ai) l?1) for cotton. The F1 neonates of insects collected from pearl millet were twice as tolerant as those collected from cotton and sunflower at Sirsa to B. thuringiensis ssp. kurstaki HD‐73, suggesting that there was an influence of host crops on insect susceptibility. Insects originally collected from cotton fields at Bhatinda and reared for four generations on a chickpea‐based meridic diet were used to initiate host‐specific colonies of H. armigera. These host‐specific colonies were allowed to complete one generation on meridic diets prepared with different hosts, viz., cabbage, cauliflower, chickpea, green pea, pearl millet, and pigeon pea. Larvae of H. armigera were heaviest on the 15th day, and had a higher growth rate on a pigeon pea‐based diet than all other host diets. The larval period was shorter on chickpea and pigeon pea, with higher percentage pupation than all other host‐diets. The pupal weight of H. armigera was greater on chickpea and pigeon pea diets than on other host diets. The growth and development of larvae was significantly poorer on pearl millet diet than on other host diets. The F1 neonates of H. armigera belonging to cabbage, cauliflower, and pearl millet host‐specific colonies were more susceptible than those belonging to chickpea, green pea, and pigeon pea host‐specific colonies to B. thuringiensis ssp. kurstaki HD‐73, suggesting the importance of proteinaceous nutrients in tolerance. The F1 neonates of the pearl millet colony of H. armigera grown on a chickpea‐diet for 4 days were significantly more tolerant to B. thuringiensis ssp. kurstaki HD‐73 than those reared on the pearl millet‐based diet. These studies show the impact of the host diet of H. armigera on tolerance to B. thuringiensis.  相似文献   

8.
With the deployment of transgenic crops expressing δ‐endotoxins from Bacillus thuringiensis (Bt) for pest management, there is a need to generate information on the interaction of crop pests with their natural enemies that are important for regulation of pest populations. Therefore, we studied the effects of the Bt δ‐endotoxins Cry1Ab and Cry1Ac on the survival and development of the parasitoid Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) reared on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae fed on Bt toxin‐intoxicated artificial diet. The H. armigera larvae fed on artificial diet impregnated with Cry1Ab and Cry1Ac at LC50 (effective concentration to kill 50% of the neonate H. armigera larvae) and ED50 (effective concentration to cause a 50% reduction in larval weight) levels before and after parasitization resulted in a significant reduction in cocoon formation and adult emergence of C. chlorideae. Larval period of the parasitoid was prolonged by 2 days when fed on Bt‐intoxicated larvae. No adverse effects were observed on female fecundity. The observed effects appeared to be indirect in nature, because no Bt proteins were detected through enzyme‐linked immunosorbent assay in the C. chlorideae larvae, cocoons, or adults fed on Cry1Ab‐ or Cry1Ac‐treated H. armigera larvae. The effects of Bt toxin proteins on C. chlorideae were due to early mortality of H. armigera larvae, that is, before completion of parasitoid larval development.  相似文献   

9.
Genetically engineered crops simultaneously produce defensive allelochemicals and Bacillus thuringiensis (Bt) toxin proteins to kill some of the world's most devastating insect pests. How the two types of toxins, when ingested sequentially or simultaneously, interact at both lethal and sublethal doses in these pests remains underexplored. Here, we examined the toxicological interactions between the Bt toxin Cry1Ac and the flavonoid allelochemical flavone in Helicoverpa armigera. Simultaneous exposure of H. armigera neonates to lethal doses (LC25) of Cry1Ac and flavone caused a mortality significantly higher than that of either toxin alone and their expected additive mortality. Preexposure for 24 h to a sublethal dose (LC10) of Cry1Ac followed by 6-d simultaneous exposure to the same dose of Cry1Ac plus a lethal dose (1.6 mg/g diets, LC50) of flavone resulted in a mortality significantly higher than that of the LC50 dose of flavone alone and the expected additive mortality of the LC50 dose of flavone plus the LC10 dose of Cry1Ac. One-day preexposure to the sublethal dose (LC10) of flavone followed by 6-d simultaneous exposure to the LC50 dose (6 ng/cm2) of Cry1Ac plus the LC10 dose of flavone yielded a mortality significantly higher than that of the LC50 dose of Cry1Ac but similar to the expected additive mortality of the LC50 dose of Cry1Ac plus the LC10 dose of flavone. The results suggest that Cry1Ac induces and synergizes the toxicity of flavone against H. armigera larvae.  相似文献   

10.
11.
Bacillus thuringiensis (Bt) insecticidal toxins have been globally utilized for control of agricultural insects through spraying or transgenic crops. Binding of Bt toxins to special receptors on midgut epithelial cells of target insects is a key step in the mode of action. Previous studies suggested aminopeptidase N1 (APN1) as a receptor or putative receptor in several lepidopteran insects including Helicoverpa armigera through evidence from RNA interefence‐based gene silencing approaches. In the current study we tested the role of APNs in the mode of action of Bt toxins using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR‐associated protein 9‐mediated gene knockout. Three APN genes (HaAPN1, HaAPN2 and HaAPN5) were individually knocked out in a susceptible strain (SCD) of H. armigera to establish three homozygous knockout strains. Qualitative in vitro binding studies indicated binding of Cry1Ac or Cry2Ab to midgut brush border membrane vesicles was not obviously affected by APN knockout. Bioassay results showed that none of the three knockouts had significant changes in susceptibility to Cry1A or Cry2A toxins when compared with the SCD strain. This suggests that the three HaAPN genes we tested may not be critical in the mode of action of Cry1A or Cry2A toxins in H. armigera.  相似文献   

12.
A local strain DOR Bt-1 belonging to Bacillus thuringiensis var. kurstaki (Bt.k) was multiplied through solid state fermentation and the resulting technical powder was milled and sieved to obtain particles of various sizes. Efficacy of Bt.k. against larvae of Helicoverpa armigera was found to increase with the decrease in particle size. Boric acid was found to be synergistic to DOR Bt-1 technical powder. LC50 of the Bt and boric acid mixture (75:25) was lower at 89.63 mg/100 mL in comparison to Bt alone at 116.75 mg/100 mL. A suspension concentrate formulation with DOR Bt-1 technical was developed using boric acid as an adjuvant. The formulation was found to be highly effective against H. armigera in laboratory bioassays with an LC50 of 185 µL (containing 53.36 mg Bt). The formulation gave effective control of H. armigera on sunflower within 3 days after spray even at the lowest dose of 1.0 mL/L under field conditions.  相似文献   

13.
The cotton bollworm Helicoverpa armigera is the major insect pest targeted by cotton genetically engineered to produce the Bacillus thuringiensis toxin (transgenic Bt cotton) in the Old World. The evolution of this pest's resistance to B. thuringiensis toxins is the main threat to the long-term effectiveness of transgenic Bt cotton. A deletion mutation allele (r1) of a cadherin gene (Ha_BtR) was previously identified as genetically linked with Cry1Ac resistance in a laboratory-selected strain of H. armigera. Using a biphasic screen strategy, we successfully trapped two new cadherin alleles (r2 and r3) associated with Cry1Ac resistance from a field population of H. armigera collected from the Yellow River cotton area of China in 2005. The r2 and r3 alleles, respectively, were created by inserting the long terminal repeat of a retrotransposon (designated HaRT1) and the intact HaRT1 retrotransposon at the same position in exon 8 of Ha_BtR, which results in a truncated cadherin containing only two ectodomain repeats in the N terminus of Ha_BtR. This is the first time that the B. thuringiensis resistance alleles of a target insect of Bt crops have been successfully detected in the open field. This study also demonstrated that bollworm larvae carrying two resistance alleles can complete development on Bt cotton. The cadherin locus should be an important target for intensive DNA-based screening of field populations of H. armigera.  相似文献   

14.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae occasionally have been reported to survive at management threshold levels in fields of Bollgard II® cotton, Gossypium hirsutum L. (Malvaceae). The pattern and degree of larval survival is not easily predicted but depends on the ability of first instars to establish on host plants. Experiments were conducted with Bacillus thuringiensis Berliner (Bt)‐susceptible and Bt‐resistant larvae of H. armigera to understand how physiologically Bt‐susceptible H. armigera survive on Bt cotton plants, and examine how their first meal influences survival rates. In assays using cotton plant parts, both strains of larvae displayed similar tendencies to drop‐off specific plant parts of Bt and non‐Bt cotton. However, significantly more Bt‐susceptible larvae dropped off young leaves, mature leaves, and squares of Bt cotton compared to non‐Bt cotton plants. Egg cannibalism significantly improved the survival of Bt‐susceptible H. armigera larvae on Bt cotton plants. Larvae were more likely to eat live aged eggs, than newly laid or dead eggs. Survival significantly improved when larvae cannibalized eggs before feeding on Bt leaves. The behavior of Bt‐susceptible larvae with respect to drop‐off and egg cannibalism may help enhance their survival on Bt cotton plants.  相似文献   

15.
The incorporation of certain stilbene optical brighteners into virus-based formulations has been demonstrated to increase viral pathogenicity (as indicated by reduced LD/LC50 values) but their effect on Bacillus thuringiensis activity has been scarcely investigated. We determined the effect of nine optical brighteners on the insecticidal activity of B. thuringiensis ser. kurstaki HD-1 strain (Bt HD-1) on Helicoverpa armigera and also compared the effect of two optical brighteners on the insecticidal activity of Bt HD-1 and occlusion bodies (OBs) of a Spanish isolate of H. armigera single nucleocapsid nucleopolyhedrovirus (HearNPV-SP1). Blankophor CLE, Blankophor DRS, Blankophor ER, and Leucophor SAC significantly increased the pathogenicity of Bt HD-1. In contrast, Tinopal UNPA-GX, Tinopal CBS, Blankophor BA, Leucophor AP, and Leucophor UO had an adverse or no effect on its insecticidal activity. Mixtures of HearNPV-SP1 OBs with Tinopal UNPA-GX or Leucophor UO resulted in 31.4- and 11.4-fold increases in pathogenicity, respectively, at 1%, and 11.4- and 6.3-fold increases in pathogenicity, respectively, at 0.1%, compared to the OBs alone. However, none of these brighteners increased Bt HD-1 activity. These results appear consistent with the hypothesis that the enhancement of HearNPV-SP1 pathogenicity and the null or antagonistic effects observed in Bt HD-1 against H. armigera were due to optical brightener-mediated degradation of the peritrophic membrane, but additional systematic studies involving a broad range of brighteners and electron microscope observations are required to confirm this premise.  相似文献   

16.
Bacillus thuringiensis (Bt) isolates were present on the phylloplanes of chickpea (Cicer arietinum), pigeon pea (Cajanus cajan), pea (Pisum sativum) and mung bean (Vigna radiata). Bt index (ratio of the number of Bt colonies to the total number of spore-forming colonies per g of leaves) differed significantly among these plants, with the highest (0.20) in the chickpea phylloplane, followed by pigeon pea (0.17). Bt population of the chickpea phylloplane varied with plant age, being maximal in 45-day-old plants. Diversity was observed among Bt isolates for growth (up to 10-fold difference), antibiotic resistance, PCR product profile and toxicity to Helicoverpa armigera. Two isolates with high activity towards H. armigera were found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.  相似文献   

18.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) causes huge economic losses in cotton production around the world. Tannin, one of the important secondary substances in cotton plants, can increase the δ‐endotoxin activity of Bacillus thuringiensis ssp. kurstaki. The mechanism of interaction between tannin and Bt toxin on H. armigera is unclear. We investigated the interaction between tannic acid and Cry1Ac toxin in H. armigera, and monitored survival, growth, and development during the larval period after treating the larvae with four concentrations of Cry1Ac toxin (0, 2, 8, and 14 μg?1) alone or in combination with four concentrations of tannic acid (0, 0.5, 1, and 2 mg g?1). Mortality of larvae treated with both tannic acid and Cry1Ac was higher than the mortality of larvae treated with tannic acid or Cry1Ac alone. Mortality was 47.5 and 51.5% in larvae treated with 14 μg g?1 Cry1Ac alone or 2 mg g?1 tannic acid alone, respectively. In contrast, larval mortality was 75% when treated with the mixture of 14 μg g?1 Cry1Ac and 2 mg g?1 tannic acid, suggesting that a mixture of the two enhanced the effectiveness of each one alone. The developmental time of larvae treated with the combination of tannic acid and Cry1Ac was significantly longer than when they were treated with Cry1Ac or tannic acid alone. Larval weight, pupal weight, and pupation rate were also significantly reduced in larvae treated with both toxins, compared with the larvae treated with either toxin alone. These results showed that the interactive effect of tannic acid and Cry1Ac on larval growth inhibition is additive, and that tannic acid improves Cry1Ac toxicity to insects. Tannic acid used in combination with B. thuringiensis might potentially reduce overall insecticide use, thus delaying development of insecticide resistance.  相似文献   

19.
Spodoptera exigua is one of the most renowned agricultural pest insects and relatively insensitive to Bacillus thuringiensis subsp. kurstaki strains which are widely used commercial products to control lepidopterans such as Heliothis armigera. In the current study, we have developed a new and efficient approach to screen and breed a B. thuringiensis subsp. kurstaki strain exhibiting high toxicity against S. exigua while retaining its high toxicity against H. armigera. UV and diethyl sulfate methods were used for mutagenesis, followed by an agar plug plate diffusion assay for preliminary screening of Zwittermicin A over-producing mutants, from which we obtained a mutant strain, designated here as B. thuringiensis subsp. kurstaki D1-23, with high toxicity against S. exigua. The toxicity of D1-23 against S. exigua and H. armigera was improved by 115.4 and 25.9%, respectively, compared to its parental commercial strain BMB005.  相似文献   

20.
Laboratory experiments were conducted to evaluate the behavior of Helicoverpa armigera (Hübner) and Spodoptera litura (Fabricius) larvae on meridic diet with different concentrations of Bt spray formulation Delfin or isolated Cry1Ac protein or the foliage and bolls from transgenic cotton, Bollgard hybrid RCH-317 Bt. Both insect species selectively fed on nontreated diet compared with the diet treated with Delfin. While H. armigera exhibited concentration response with Cry1Ac, this protein did not affect S. litura larvae. In general Helicoverpa selected diet with low concentrations (EC20 and EC50 levels) of Cry1Ac compared with higher concentrations of Cry1Ac. In order to develop appropriate management strategies, a thorough understanding of the behavioral mechanisms leading to the responses of insects to the proteins in transgenic varieties is required. Thus, based on results of the insects fed individually on the leaf discs or bolls from transgenic cotton plants alone or under choice situation with meridic diet revealed that H. armigera larvae preferred meridic diet to transgenic leaves or bolls expressing Cry1Ac protein. H. armigera larvae preferred meridic diet to plant material; more than 70% larvae were seen on the meridic diet, and average larval weight gain was in the range of 121.7–130.5 mg. However, in case of S. litura the larvae showed no significant discrimination between meridic diet and the leaf discs. In fact more than 60% larvae preferred leaf discs for feeding, though Cry1Ac expression in leaf discs was in the range of 0.9–2.18 μg/g. Thus differences in behavioral response could potentially impact the level of efficacy of crop cultivars that have been genetically engineered to produce these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号