首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This review presents experimental data on the perinatal significance of the recently developed concept of physical water compartments. This concept implies that in addition to the compartmentalization of body water into the intra- and extracellular spaces, motionally distinct water fractions - designated as physical water compartments - are also of importance in the neonatal body fluid redistribution. H(1)-NMR spectroscopy provides a quantitative estimate of tissue water fractions with different mobility as multicomponent analysis of the T(2) relaxation decay curves allows us to determine the fast and slow relaxing components of the curves corresponding to the bound and free fractions of tissue water. Using this method, free and bound water fractions were measured in fetal and neonatal rabbit tissues (skin, skeletal muscle, liver, brain, lung) at different stages of maturity and under conditions of various fluid intake. It has been demonstrated that water mobility in individual fetal/neonatal tissues varies greatly and there is a general tendency of increasing free water at the expense of bound water fraction with progressing maturation. This tendency appears to be accelerated in the immediate postnatal period when the tissue water content is markedly reduced. The importance of hyaluronan in this process has also been addressed as the hyaluronan content is markedly elevated in the fetal/neonatal tissues and due to its polyanionic, hydrophilic nature it has been claimed to play a prominent but not clearly defined role in the control of tissue hydration.  相似文献   

3.
ABSTRACT: BACKGROUND: Body weight is at least partly controlled by the choices made by a human in response to external stimuli. Changes in body weight are mainly caused by energy intake. By analyzing the mechanisms involved in food intake, we considered that molecular diffusion plays an important role in body weight changes. We propose a model based on Fick's second law of diffusion to simulate the relationship between energy intake and body weight. RESULTS: This model was applied to food intake and body weight data recorded in humans; the model showed a good fit to the experimental data. This model was also effective in predicting future body weight. CONCLUSIONS: In conclusion, this model based on molecular diffusion provides a new insight into the body weight mechanisms.  相似文献   

4.
Diffusion of water in cat ventricular myocardium   总被引:1,自引:0,他引:1       下载免费PDF全文
The rates of diffusion of tritiated water (THO) and [14C]sucrose across cat right ventricular myocardium were studied at 23 degrees C in an Ussing-type diffusion cell, recording the time-course of increase in concentration of tracer in one chamber over 4--6 h after adding tracers to the other. Sucrose data were fitted with a model for a homogeneous sheet of uneven thickness in which the tissue is considered to be an array of parallel independent pathways (parallel pathway model) of varying length. The volume of the sucrose diffusion space, presumably a wholly extracellular pathway, was 23% of the tissue or 27.4 +/-1.7% (mean +/- SEM; n=11) of the tissue water. The effective intramyocardial sucrose diffusion coefficient, D8, was 1.51 +/- 0.19 X 10(-6)cm2.s-1 (n=11). Combining these data with earlier data, D8 was 22.6 +/- 1.1% (n=95) of the free diffusion coefficient in aqueous solution D degrees 8. The parallel pathway model and a dead-end pore model, which might have accounted for intracellular sequestration of water, gave estimates of DW/D degrees W (observed/free) of 15%. Because hindrance to water diffusion must be less than for sucrose (where D8/D degrees 8=22.6%), this showed the inadequacy of these models to account simultaneously for the diffusional resistance and the tissue water content. The third or cell-matrix model, a heterogeneous system of permeable cells arrayed in the extracellular matrix, allowed logical and geometrically reasonable interpretations of the steady-state data and implied estimates of DW in the cellular and extracellular fluid of approximately 25% of the aqueous diffusion coefficient.  相似文献   

5.
Adipose tissue is a dynamic endocrine and paracrine organ producing a large number of signalling proteins collectively termed adipokines. Some of them are mediators in the cross‐talk between adipose tissue and the brain in regulating food intake and energy homoeostasis. However, the hypothalamus is not the only brain target for adipokines, and food intake is not the only biological effect of these signals. Rather, some adipokines support various cognitive functions and exert neurotrophic activity. Current data on adipose‐derived neuropeptides, neurotrophic factors, pituitary hormones and hypothalamic releasing factors is highlighted in this review. We propose that adipose tissue is a member of the diffuse neuroendocrine system. Cumulatively, this is conceptualized as neuroadipology, a new example of a link between neurobiology and other topics, such as neuroimmunology and neuroendocrinology. Because adipose tissue is a bona fide endocrine organ, neuroadipology may be considered a new discipline in neuroendocrinology. It may have a wide‐ranging potential within a variety of neuronal and metabolic functions in health and disease.  相似文献   

6.
7.
Diffusion Magnetic Resonance Imaging provides images of unquestionable diagnostic value. It is commonly used in the assessment of stroke and in white matter fiber tracking, among other applications. The diffusion coefficient has been shown to depend on cell concentration, membrane permeability, and cell orientation in the case of white matter or muscle fiber tracking; yet a clear relation between diffusion measurements and known physiological parameters is not established. The aim of this paper is to review hypotheses and actual knowledge on diffusion signal origin to provide assistance in the interpretation of diffusion MR images. Focus will be set on brain images, as most common applications of diffusion MRI are found in neuroradiology. Diffusion signal does not come from two intra- or extracellular compartments, as was first assumed. Restriction of water displacement due to membranes, hindrance in the extracellular space, and tissue heterogeneity are important factors. Unanswered questions remain on how to deal with tissue heterogeneity, and how to retrieve parameters less troublesome to work with from biological and clinical points of view. Diffusion quantification should be done with care, as many variables can lead to variation in measurements.  相似文献   

8.
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.  相似文献   

9.
10.
根据水在介质中的流动规律和能量守恒原理,在植物叶片内建立了一个稳态的水传输模型。该模型考虑了气孔复合体内外、共质体与质外体、原生质与细胞壁在水传输上的不同,应用计算机详细地分析和计算了叶内(特别是气孔复合体内)水的传输,得到水势在叶片内近似分布的关系式。应用这些关系式对叶内的水势和水势差作了估计,并对不同解剖特征叶片内的水势差作了比较。  相似文献   

11.
The energy balance equation applicable to all living organisms was used as a framework on which to construct a critical review of some of the more controversial aspects of the obesity problem. The equation matches energy intake against all the known forms of work that the body does in utilizing that energy, including external and internal work and the work of adipose tissue synthesis (stored energy). Equations representing everyday living conditions, resting, fasting and basal conditions were constructed. The equation applicable to everyday living (working, non-fasting) was used to develop a set of model paradigms to illustrate some of the devices that can be invoked to decrease expenditure and conserve energy. These served as models of how obesity can arise in the absence of calorie overconsumption. The same equation was then used to create a set of opposite paradigms showing how obesity can be prevented by increasing expenditure to waste energy and stabilize body weight when challenged by hyperphagia. In order to see caloric intake and the various work terms in their proper quantitative relationships it was necessary to assign numerical values to the equation. These were selected from published reports of caloric values representative of a non-obese adult of average size engaged in a typical white collar occupation. It was then easy to adjust these assigned values commensurate with the objectives described in the preceding paragraph. Since obesity research is hampered by a confusing array of metabolic interactions it was essential to alter only one of the energy terms at a time, excluding all metabolic interactions except for those unavoidable ones dictated by the laws of thermodynamics. Only in this way could we see the body's multiple energy forms in clear perspective with regard to their real quantitative significance in the energy balance sheet and their potential impact on body weight. Creating these models gave us the added advantage of enabling us better to evaluate the scientific literature because the data we generated, although theoretical, served as excellent standards against which to compare the real data that have emanated from research laboratories.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
A Scott  S Wyatt  P L Tsou  D Robertson  N S Allen 《BioTechniques》1999,26(6):1125, 1128-1125, 1132
The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.  相似文献   

13.
A centrifugal dehydration force (CDF) method to quantify changes in tissue hydration in fresh and in post-mortem muscular fish tail tissue is presented. The data obtained were used to assess fluid flow rate from tissues and the size of hydration compartments expressed in g water/g dry mass (DM). Curve fit analysis demonstrated that muscle tissue has three detectable water compartments. Application of the method to the fresh fish indicated the presence of a large non-bulk water compartment (3.14 g water/g DM) with a much smaller (0.11 g water/g DM) inner non-bulk water sub-compartment in addition to a comparatively small bulk water compartment (0.99 g water/g DM). At 10 min and at 4h post-mortem, no significant change in size or flow rate of the water compartments was observed. At 24h post-mortem the muscular fish tissue, stored in water, swelled with statistically significant increase in total water and in the bulk water compartment but no significant change in the size of the non-bulk water compartments. The water flow rate from the non-bulk water compartment was, however, increased significantly in the 24h dead tissue. This simple CDF method has application for quantization of bulk and non-bulk water compartments in other biological and non-biological systems.  相似文献   

14.
Summary Using isolated head perfused at constant flow rates, close to those occurringin vivo, the movement of tritiated water through the gill epithelium of the trout,Salmo gairdneri was studied.The analysis of the curves of loading and unloading of tritiated water between the gill epithelium and the external and internal media shows two exponentials with different slopes in each medium. As the rapid exponentials have identical slopes, the external medium, the gill epithelium, and the perfusion medium constitute a system of three compartments in series for water exchanges. The kinetic analysis of rapid exponentials allowed us to calculate the characteristics of water movement through the apical and basal membrane and the size of the pool of water participating in the exchange mechanism.When the trout head is perfused without adrenaline, the permeability of the apical membrane to water is about 8 times higher than that of the basal membrane, the latter constituting the limiting factor for water diffusion.When the trout head is perfused with a perfusion medium containing 10–5 m adrenaline this hormone produces a double action: it leads to a comparable increase in the permeability of both the apical and basal membranes and also increases the size of the water transport pool by a factor of four.  相似文献   

15.
Antidiuretic hormone (ADH) induces a large increase in the water permeability of the luminal membrane of toad urinary bladder. Measured values of the diffusional water permeability coefficient, Pd(w), are spuriously low, however, because of barriers within the tissue, in series with the luminal membrane, that impede diffusion. We have now determined the water permeability coefficient of these series barriers in fully stretched bladders and find it to be approximately 6.3 X 10(- 4) cm/s. This is equivalent to an unstirred aqueous layer of approximately 400 microns. On the other hand, the permeability coefficient of the bladder to a lipophilic molecule, hexanol, is approximately 9.0 X 10(-4) cm/s. This is equivalent to an unstirred aqueous layer of only 100 microns. The much smaller hindrance to hexanol diffusion than to water diffusion by the series barriers implies a lipophilic component to the barriers. We suggest that membrane-enclosed organelles may be so tightly packed within the cytoplasm of granular epithelial cells that they offer a substantial impediment to diffusion of water through the cell. Alternatively, the lipophilic component of the barrier could be the plasma membranes of the basal cells, which cover most of the basement membrane and thereby may restrict water transport to the narrow spaces between basal and granular cells.  相似文献   

16.
Mulitorgan dysfunction syndrome (MODS) is one of the most frequent conditions encountered in intensive-care medicine. MODS is defined as total r partial loss oftwo or more organs with vital functions. The development of acute renal failure (ARF) in MODS leads to an additional aggravation with considerably higher hospital mortality than in other ICU patients with MODS. Whereas dissolved substances involved in the regulation of regional blood flow, endothelial cell injury, microvascular permeability, oxygnation, and nutrition of cells are at the focus of interest in MODS, hardly any scientific attention is paid to their main solvent water. An impaired renal water excretion and an icreased metabolic water volunme requiring exceetion interfere with diffusive and convective oxygen transport through the different fluid compartments. It will be shown first that the ratio of Uosm/Posm appears to be a reliable tools to assess overhydration in ARF. Secondly, the limits of urinary output in response to water intake will be considered. Furthermore, the metabolic water formation by an enhanced degradation of endogenous protein and fat will be discussed. Finally, the daily caloric intake is questioned with respect to energy expenditure and metabolic water formation.  相似文献   

17.
18.
Voltage-clamp analysis of membrane currents in multicellular muscle preparations by means of the sucrose gap method is complicated by diffusion of saline and sucrose in the interstitial fluid spaces. This paper is the first part of a theoretical study made to analyze electrical events related to this diffusion process. Concentration profiles of ions and sucrose (both axial and radial) were computed by solving diffusion equations with boundary conditions appropriate for the different types of preparations and experimental arrangements used. In addition to steady-state solutions, analytical expressions were derived that describe the time-course with which concentration profiles become established after a stepwise change of the solute concentration in one of the compartments of the sucrose gap apparatus. The model accounts for the presence of an endothelial surface layer, or endocardium, which acts as an external diffusion barrier and is important in determining concentration gradients of solutes within heart cell preparations. Results of numerical computations dealing with several cases of experimental interest are presented.  相似文献   

19.
A molecular model of collagen hydration is used to validate centrifugal dehydration force (CDF) and re-hydration isotherm (RHI) methods to measure and characterize hydration compartments on bovine tendon. The CDF method assesses fluid flow rate from flexor and extensor tendons expressed in (g-water/g-dry mass-minute) and hydration capacity of compartments in (g-water/g-dry mass). Measured water compartment capacities agree with the molecular model of collagen hydration [Fullerton GD, Rahal A. Collagen structure: the molecular source of tendon magic angle effect. J Mag Reson Imag 2007;25:345-361; Fullerton GD, Amurao MR. Evidence that collagen and tendon have monolayer water coverage in the native state. Cell Biol Int 2006;30(1):56-65]. Native tendon hydration has monolayer coverage on collagen h(m)=1.6 g/g which divides into primary hydration on polar surfaces h(pp)=0.8 g/g and secondary hydration h(s)=0.8 g/g bridging over hydrophobic surfaces. Primary hydration is hydrogen bonded to collagen polar side chains h(psc)=0.54 g/g with small free energy or to the protein main chain hydration h(pmc)=0.26 g/g with greater free energy of binding. The CDF method replaces the more time consuming water proton NMR spin-lattice dehydration (NMR titration) method, confirms the presence of three non-bulk water compartments on collagen (h(pmc)=0.26 g/g, h(pp)=0.8 g/g and h(m)=1.6 g/g). This CDF method provides the most reproducible experimental measure of total tissue non-bulk water (TNBW). The re-hydration isotherm method, on the other hand, provides the most accurate measure of the Ramachandran water-bridge capacity h(Ra)=0.0656 g/g. The only equipment needed are: microfilterfuge tubes, a microcentrifuge capable of 14,000 x g or 4MPa, a vacuum drying oven, an accurate balance and curve fitting ability. The newly validated methods should be useful for characterizing multiple water compartments in biological and non-biological materials by allowing direct measurement of water compartment changes induced by pH, co-solute salt, glycation and protein cross-linking.  相似文献   

20.
We have developed a fully three-dimensional (3D) model of calcium signaling in epithelial cells based on a set of reaction diffusion equations that are solved on a large-scale finite-element code in three dimensions. We have explicitly included the cellular compartments including the cell nucleus, cytoplasm, and gap junctions. The model allows for buffering of free Ca2+, calcium-induced calcium release, and the explicit inclusion of mobile buffers. To make quantitative comparisons to experimental results, we used fluorescence microscopy images of cells to generate an accurate mesh describing cell morphology. We found that Ca2+ wave propagation through the tissue is a function of both initial conditions used to start the wave and various geometrical parameters that affect propagation such as gap junction density and distribution, and the presence of nuclei. The exogenous dyes used in experimental imaging also affect wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号