首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zeiger E 《Mutation research》2001,492(1-2):29-38
In the National Toxicology Program database of 172 chemicals that were judged non-carcinogenic or equivocal in 2 year rodent studies in both sexes of rats and mice, there are 38 chemicals that were mutagenic in Salmonella. All but two of the chemicals had structural alerts for mutagenicity. The largest proportion of the mutagenic non-carcinogens were benzeneamines and substituted benzeneamines. In all, 12 of the mutagenic non-carcinogens had mutagenic carcinogen analogues, and for two chemicals, the carcinogenic analogues were not mutagenic. Non-carcinogens that were mutagenic in Salmonella also tended to be mutagenic and clastogenic in mammalian in vitro tests. The mutagenic responses are discussed and explanations offered for the mutagenicity and lack of carcinogenic activity of these chemicals.  相似文献   

2.
The recent activity in designing, validating and implementing short-term tests for carcinogens has been spurred by the fairly convincing correlation between the carcinogenicity and mutagenicity of chemicals and by the assumption that mutations are somehow involved in neoplastic transformation. Moreover, it has been tacitly assumed that the mutagenic capacity alone of compounds would induce regulatory agencies to pass rules for their removal from man's environment, and would lead the public to avoid them. The actual response, however, is quite different. Government departments shy away from making any decisions on the basis of in vitro test systems, the public at large is becoming irritated by daily announcements that many of their cherished habits could adversely affect their health, and industries feel threatened and may reduce their search for new beneficial chemicals. The reluctance to accept wholeheartedly the mutagenicity tests for the detection of carcinogens is partly due to the uncertainty about the involvement of mutations in the formation of benign and malignant tumors. Following the initial rapid advances in the detection of environmental chemicals with carcinogenic and mutagenic properties, we seem to have arrived at the cross roads: we must now set new priorities for future research, and must make an unbiased assessment of the actual hazard of a compound to man and the human population.  相似文献   

3.
G R Mohn 《Mutation research》1981,87(2):191-210
During the past 30 years, bacterial test systems have been extensively refined in their ability to detect not only mutagenic agents but, in many cases, carcinogenic ones as well. Since many carcinogens are known to be activated within the mammalian body, major improvements in bacterial test systems were made when representative parts of mammalian metabolism were included as part of the test protocol. Presently, systems of great simplicity and convenience are available for the efficient detection of gene mutations, lysogenic induction of prophages, and differential DNA repair. These qualities render bacterial systems potentially useful in distinguishing between carcinogens and non-carcinogens, in characterizing induced mutation spectra, and possibly in quantifying mutagenic potency that may be used to predict tumor-initiating potency. Sensitive strains of Salmonella typhimurium. Escherichia coli and Bacillus subtilis with altered DNA-repair capacities have been constructed which accurately identify many carcinogens. Comparative studies have shown that techniques using these strains can be standardized to some extent and that the majority of carcinogens are active in all adequately sensitive genetic systems. Because of this redundancy, it may be sufficient to employ only one standardized set of tester strains and methodology. However, serveral classes of known carcinogens are undetected or underestimated when assayed in standard testing procedures. Some of these chemicals can be efficiently recognized as mutagens upon varying the methodology, the genetic endpoint, or the mammalian activation system. Thus, to modify and adjust the experimental protocol to the particular type of chemical under study and to calibrate the system with appropriate carcinogenic and non-carcinogenic reference compounds is advisable. It is noteworthy that chemical carcinogens which probably act by non-genotoxic mechanisms thus far remain undetected in bacterial tests. Newly developed systems which measure specific types of genetic events, such as transpositions of DNA segments and derepression of genes, presently are being tested for their ability to detect such carcinogens. A final matter of growing concern is the increasing number of environmental chemicals that are found to be mutagenic in bacteria but for which information about carcinogenic activity in vivo is insufficient. The possible use of bacteria for quantifying mutagenic potency and extrapolating this information to tumor-initiating potency can be envisaged in three ways: (i) direct extrapolation from standard in vitro tests, (ii) indirect extrapolation making use of an in vitro/in vivo comparison of induced effects (the parallelogram method) as devised by Sobels [138] on the basis of identical dose (to DNA), and (iii) host-mediated assays to assess mutagenic potency of carcinogens in selected organs of mammals...  相似文献   

4.
The removal of carconogenic factors would be a most efficient measure to prevent cancer. As far as known chemicals are concerned, every effort is made to avert them, or at least to reduce the exposure to such compounds, but is necessary to detect unknown chemicals, especially those, drugs and foodstuffs for example, to which large populations are exposed. Giving suspected chemicals to laboratory animals is a standard carcinogenicity test. Studies of the carcinogenicity of unknown chemicals in animals are time consuming, expensive and cumbersome. This is why other means of establishing carcinogenicity are sought for. Several rapid tests are available to-day to select suspected carcinogens. These methods aim primarily at determining with chemicals--at the cell or tissue level--certain changes that would appear essential to trigger the carcinogenic process, such as somatic mutations. Studies are used on the mutagenicity of chemicals for bacteria of the Salmonella type, for yeast and cultured mammalian cells, together with the induction of recessive lethal mutations in Drosophila and of the unscheduled repair synthesis of DNA and the transformation of mammalian cells in vitro. Although there is an unequivocal correlation between the activity of chemicals in such tests and their carcinogenicity, discrepancies are found. Thus, the in vivo tests on laboratory animals remain the most reliable method to determine carcinogenicity. Whereas direct extrapolation of experimental data to human pathology is impossible, the experimental evidence of the carcinogenicity of any chemical should allow us to draw constructive conclusions. We shall never be able to reject drugs which produce the expected results and cannot be replaced by other drugs. But we can must the drugs whose beneficial effects are not exceptional and which can be replaced by other chemicals. As for the chemicals used in food additives and cosmetics, and recognized as carcinogenic in animals, they should be totally given up. Any decision made should be based on animal studies.  相似文献   

5.
A review has been made of the four compounds (maleic hydrazide, methyl nitrosourea, sodium azide, azidoglycerol) tested in the International Program on Chemical Safety's collaborative study systems. Maleic hydrazide (MH) is a weak cytotoxic/mutagenic chemical in mammalian tissues and is classified as a class 4 chemical. In contrast, with few exceptions such as Arabidopsis, MH is a potent mutagen/clastogen in plant systems. The difference in its response between plant and animal tissue is likely due to differences in the way MH is metabolized. MH appears to be noncarcinogenic and has been given a negative NCI/NTP carcinogen rating.

Methyl nitrosourea (MNU) is a toxic, mutagenic, radiomimetic, carcinogenic, and teratogenic chemical. It has been shown to be a mutagen in bacteria, fungi, Drosophila, higher plants, and animal cells both in vitro and in vivo. MNU is a clastogen in both animal and human cell cultures, plant root tips and cell cultures inducing both chromosomes and chromatid aberrations as well as sister-chromatid exchanges. Carcinogenicity has been confirmed in numerous studies and involves the nervous system, intestine, kidney, stomach, bladder and uterus, in the rat, mouse, and hamster. MNU produces stage-specific teratogenic effects and also interferes with embryonic development. The experimental evidence that strongly indicates the mutagenic effects of MNU underlines the possible hazard of this compound to human beings. The experimental evidence for the stringent handling of this compound is clear.

Sodium azide (NaN3) is cytotoxic in several animal and plant systems and functions by inhibiting protein synthesis and replicative DNA synthesis at low dosages. It is mutagenic in bacteria, higher plants and human cells and has been used as a positive control in some systems. In general, tests for clastogenicity have been negative or weakly positive. No evidence of carcinogenicity has been reported in a 2-year study seeking carcinogenic activity in male and female rats. Its advantages in comparison to other efficient mutagens are claimed to be a high production of gene mutations accompanied by a low frequency of chromosomal rearrangements and safer handling because of its nonclastogenic and noncarcinogenic action on humans.  相似文献   


6.
The National Toxicology Program (NTP) was established in 1978 with the broad goal of strengthening the science base of chemical toxicity, thus providing better information to regulatory and research agencies. Since that time the NTP has conducted in-depth toxicity/carcinogenesis studies on over 200 chemicals of importance to industry, the public at large and the general environment; clearly the largest such database in the world. This database is unique in that it represents an objective fairly standard accumulation of peer-reviewed information on a myriad of chemicals composed of various chemical classes, non-carcinogens as well as carcinogens. The results of these studies are reported as "no evidence, equivocal evidence, some evidence or clear evidence of carcinogenic activity" in a single sex/species. There is also an "inadequate" category for studies that have major limitations. Although noted, no attempt is made to give added weight to chemicals which cause neoplasms at multiple sites, at rare versus common sites, in both species/sexes, which occur early in the study, at low as well as high doses, or those observed in the presence or absence of toxicity (necrosis, degeneration, etc.) in the same organ. Such observational data may serve as "markers" or "alerts" for whether a chemical's in vivo carcinogenic activity is the result of mutagenic or non-mutagenic activity.  相似文献   

7.
We have recently developed an alkaline elution/rat hepatocyte assay to sensitively measure DNA single-strand breaks induced by xenobiotics in non-radiolabeled rat hepatocytes. Here we have evaluated this assay as a predictor of carcinogenic/mutagenic activity by testing 91 compounds (64 carcinogens and 27 non-carcinogens) from more than 25 diverse chemical classes. Hepatocytes were isolated from uninduced rats by collagenase perfusion, exposed to chemicals for 3 h, harvested, and analyzed for DNA single-strand breaks by alkaline elution. DNA determinations were done fluorimetrically. Cytotoxicity was estimated by glutamate-oxaloacetate transaminase release or by trypan blue dye exclusion. The assay correctly predicted the reported carcinogenic/non-carcinogenic potential of 92% of the carcinogens tested and 85% of non-carcinogens tested. The assay detected a number of compounds, including inorganics, certain pesticides, and steroids, which give false-negative results in other short-term tests. Only 2 rat liver carcinogens were incorrectly identified; the other carcinogens incorrectly identified are weakly or questionably carcinogenic (i.e., they cause tumors only in one species, after lifetime exposure, or at high doses). Some chemicals cause DNA damage only at cytotoxic concentrations; of 16 such compounds in this study, 12 are weak carcinogens suggesting a link between DNA damage caused by cytotoxicity and carcinogenesis. Our data indicate that this assay rapidly, reproducibly, sensitively, and accurately detects DNA single-strand breaks in rat hepatocytes and that the production of these breaks correlates well with carcinogenic and mutagenic activity.  相似文献   

8.
In this work, the biological effects of diethylnitrosamine (DENA) have been studied under controlled conditions of its metabolism in mice of different ages. The results indicate that the general toxic and hepatocarcinogenic effects of DENA are mostly due to the parent compound, whereas the alkylating metabolites cause hepatic cell damage. Our findings cast doubt on the conventional understanding of the exclusive role of mutagenic activation in the carcinogenic action of chemicals.  相似文献   

9.
The genetic toxicity of human carcinogens and its implications   总被引:9,自引:0,他引:9  
23 chemicals and chemical combinations have been designated by the International Agency for Research on Cancer (IARC) as causally associated with cancer in humans. The literature was searched for reports of their activity in the Salmonella mutagenicity assay and for evidence of their ability to induce chromosome aberrations or micronuclei in the bone marrow of mice or rats. In addition, the chemical structures of these carcinogens were assessed for the presence of electrophilic substituents that might be associated with their mutagenicity and carcinogenicity. The purpose of this study was to determine which human carcinogens exhibit genetic toxicity in vitro and in vivo and to what extent they can be detected using these two widely employed short-term tests for genetic toxicity. The results of this study revealed 20 of the 23 carcinogens to be active in one or both short-term tests. Treosulphan, for which short-term test results are not available, is predicted to be active based on its structure. The remaining two agents, asbestos and conjugated estrogens, are not mutagenic to Salmonella; asbestos is not likely to induce cytogenetic effects in the bone marrow and the potential activity of conjugated estrogens in the bone marrow is difficult to anticipate. These findings show that genetic toxicity is characteristic of the majority of IARC Group 1 human carcinogens. If these chemicals are considered representative of human carcinogens, then two short-term tests may serve as an effective primary screen for chemicals that present a carcinogenic hazard to humans.  相似文献   

10.
The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of some chemical substances estimated using the soybean test are presented. Selective information on the carcinogenic activities of substances obtained in special carcinogenicity tests has been used as a quantitative measure of the efficiency of the tests with soybean leaves. To estimate the weight of evidence for the presence of this activity in the tested substances, a special function has been used whose values are uniquely related to the complete information, which is the sum of a priori information and the information obtained after testing. In general, the results have shown that the somatic mutation score test using soybean leaves is at least as efficient as the well-known tests that are generally used now, such as the Ames test and the chromosome aberration score test using mammalian cells in vitro. This test may be promising for the formation of efficient short-term test batteries.  相似文献   

11.
A forward and a reverse mutation assay designed to detect environmental mutagens have been compared in Salmonella typhimurium. The forward mutation assay scored resistance to L-arabinose and the reverse assay, reversion of histidine auxotrophy. Eighteen chemicals of different structural groups, all known to be mutagenic in the histidine reverse assay, were applied to strains carrying the genetic markers needed to perform both mutation assays. The mutagenicity of each chemical was determined by both plate and liquid tests. The plate test counted absolute numbers of surviving mutants and the liquid test separately measured survival and frequency of mutants among the survivors. All the chemicals used were found to be mutagenic in both mutation assays. The response of the L-arabinose assay was equal to or larger than the response of the histidine assay in the case of 16 chemicals. The two other compounds, 2-nitrofluorene and sodium azide, were detected more efficiently by the histidine assay. Sodium azide, a non-carcinogenic compound, is a potent mutagen in the histidine assay, but very weak in the L-arabinose assay.  相似文献   

12.
On the mutagenicity of nitroimidazoles   总被引:4,自引:0,他引:4  
Regarding mutagenicity, metronidazole is one of the best-investigated compounds of the nitroimidazoles. This drug is mutagenic on bacteria, especially if base-pair tester strains are used and bacterial nitroreductases are present. The serum levels attained in man after intake of this drug are sufficient to cause mutations in bacteria. Furthermore, interaction with and binding to DNA occurs under anaerobic conditions and sometimes DNA breaks are observed. However, metronidazole does not show mutagenic activity in mammalian cells in vitro; the micronucleus test is negative and chromosome aberrations are only found under anaerobic conditions. With microbial systems the mutagenicity of 47 nitroimidazoles has been investigated. Only 4 compounds were always negative in the applied test systems. Because with base-pair tester strains mutagenicity was assessed, this class of compounds should be regarded as a base-pair mutagen. In fungi, some compounds (e.g. ZK 26173 and azathioprine) are potent mutagens, whilst with most investigated nitroimidazoles only a weak or no mutagenic activity could be detected. Somewhat similar observations have been made in tests with Drosophila melanogaster, a test for gene mutations in mammalian cells, the micronucleus test, cytogenic tests and the dominant lethal test. The reduction products of metronidazole, misonidazole and 1-methyl-2-nitro-5-vinylimidazole, cause DNA damage if the nitro group is reduced in the presence of DNA. Reduction products are formed by microbes in the gut or by mammalian cells under anaerobic conditions. No teratological effect due to metronidazole or most other nitroimidazoles has been observed. Metronidazole is carcinogenic in mice and rats, and dimetridazole in rats. Up to the present, no carcinogenic effects have been observed in man. Azathioprine is probably carcinogenic for man. It is unlikely that the therapeutic applications of the presently used nitroimidazoles, except for azathioprine, will cause an increase in the tumor incidence in man or will cause other genotoxic effects, although such effects cannot be excluded with certainty.  相似文献   

13.
The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of some chemical substances estimated using the soybean test are presented. Selective information on the carcinogenic activities of substances obtained in special carcinogenicity tests has been used as a quantitative measure of the efficiency of the tests with soybean leaves. To estimate the weight of evidence for the presence of this activity in the tested substances, a special function has been used whose values are uniquely related to the complete information, which is the sum of a priori information and the information obtained after testing. In general, the results have shown that the somatic mutation score test using soybean leaves is at least as efficient as the well-known tests that are generally used now, such as the Ames test and the chromosome aberration score test using mammalian cells in vitro. This test may be promising for the formation of efficient short-term test batteries.  相似文献   

14.
As a basis of the suggested test-system, the following conditions are observed: 1) the economy of fulfilment in a short time; 2) the analysis of gene and chromosome mutations in germ and somatic cells; 3) the evaluation of mutagenic effects of not only substance, but also of the products of its metabolism; 4) including in the system only the tests which give the minimal variability between separate experiments; 5) the evaluation of dose-effect relationship. The practical scheme of testing is divided into two parts: a screening and a complete one. The screening programme consists of two tests: a) a test on microorganisms with a metabolic activation in vitro; b) a cytogenetic analysis of bone marrow of mammals. The complete programme of testing includes 4 tests: a) a test on microorganisms with a metabolic activation in vitro and in vivo; b) a test of dominant lethal mutations on mammals; c) a cytogenetic analysis of bone marrow of mammals; d) a cytogenetic analysis in the culture of human lymphocytes. There are good reasons for the principles of selection of substance for testing according to the screening and complete programme: population occurence, economic (or medical) significance, information about relative chemicals showing mutagenic, carcinogenic and teratogenic effect. In the group of chemicals which are to be tested according to the screening programme, such ones can be included: industrial chemicals, phosphoorganic insecticides, drugs which are taken by a limited group of patients. The group of chemicals which are to be tested according to the complete programme consists of the following ones: pesticides, food additices, widespread drugs, the chemicals of the group 1, if during one of the tests of the screening programme a genetic effect is detected. At the genetic risk estimation it is advisable to keep to the following rule: a positive effect, identified in any object of the system must in the direct meaning extrapolate on men. The quantitative evaluation of the mutagenic danger of a chemical can be determined by the increase of the spontaneous level of mutations in the test-object on the basis of an average dose and exposition of the given chemical in the human population. Those chemicals are subject to the quantitative evaluation, which have shown a mutagenic activity during any of the test-objects; they are also widespread and because of their social or economic value can not be replaced or excluded from taking. From the point of view of genetics any substance with a mutagenic activity is dangerous and must be prohibited from using or replaced by any other non-mutagenic chemical, or limited by the contact of persons of non-reproductive age. As a temporary measure from a hygienic point of view, it is recommended to evaluate this chemical as especially mutagenic and prohibit or limit its using, when its average population dose produces 1/10 or more increase of the spontaneous level of mutations.  相似文献   

15.
Aluminium and its salts, which are extensively used in the household and in industry, do not constitute a carcinogenic, mutagenic or teratogenic hazard, except, perhaps, in cases of extremely high exposure. The large majority of the experiments performed to assess the carcinogenicity of aluminium in laboratory animals gave negative results or even suggested some antitumor activity. Moreover, epidemiological studies have not provided clear evidence of a carcinogenic hazard of aluminium to man, and short-term tests made in vitro and in vivo to demonstrate mutagenic activity of A1 were negative except for some experiments in plants. The embryotoxic properties suggested by the studies on birds and mammals could result from the influence of A1 on phosphate and calcium metabolism or from interference with the polymerization of microtubules.  相似文献   

16.
Lewtas J 《Mutation research》2007,636(1-3):95-133
Combustion emissions account for over half of the fine particle (PM(2.5)) air pollution and most of the primary particulate organic matter. Human exposure to combustion emissions including the associated airborne fine particles and mutagenic and carcinogenic constituents (e.g., polycyclic aromatic compounds (PAC), nitro-PAC) have been studied in populations in Europe, America, Asia, and increasingly in third-world counties. Bioassay-directed fractionation studies of particulate organic air pollution have identified mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAH), nitrated PAH, nitro-lactones, and lower molecular weight compounds from cooking. A number of these components are significant sources of human exposure to mutagenic and carcinogenic chemicals that may also cause oxidative and DNA damage that can lead to reproductive and cardiovascular effects. Chemical and physical tracers have been used to apportion outdoor and indoor and personal exposures to airborne particles between various combustion emissions and other sources. These sources include vehicles (e.g., diesel and gasoline vehicles), heating and power sources (e.g., including coal, oil, and biomass), indoor sources (e.g., cooking, heating, and tobacco smoke), as well as secondary organic aerosols and pollutants derived from long-range transport. Biomarkers of exposure, dose and susceptibility have been measured in populations exposed to air pollution combustion emissions. Biomarkers have included metabolic genotype, DNA adducts, PAH metabolites, and urinary mutagenic activity. A number of studies have shown a significant correlation of exposure to PM(2.5) with these biomarkers. In addition, stratification by genotype increased this correlation. New multivariate receptor models, recently used to determine the sources of ambient particles, are now being explored in the analysis of human exposure and biomarker data. Human studies of both short- and long-term exposures to combustion emissions and ambient fine particulate air pollution have been associated with measures of genetic damage. Long-term epidemiologic studies have reported an increased risk of all causes of mortality, cardiopulmonary mortality, and lung cancer mortality associated with increasing exposures to air pollution. Adverse reproductive effects (e.g., risk for low birth weight) have also recently been reported in Eastern Europe and North America. Although there is substantial evidence that PAH or substituted PAH may be causative agents in cancer and reproductive effects, an increasing number of studies investigating cardiopulmonary and cardiovascular effects are investigating these and other potential causative agents from air pollution combustion sources.  相似文献   

17.
Mammalian cytochrome P450s provide our first line of defence against the toxic effects of environmental chemicals. Ironically these enzymes also convert some compounds to their ultimate toxic or mutagenic species. Our knowledge of these mammalian enzymes and the role they play in chemical toxicity and mutagenesis has stemmed mostly from in vitro studies. In order to establish the role of specific enzymes in the toxicological response in vivo we have generated transgenic Drosophila which express mammalian cytochrome CYP2B1, which is a member of a large gene family encoding several important drug metabolising enzymes. The gene was fused to a Drosophila promoter which confers expression in the larval fat body. Using the Somatic Mutation And Recombination Test (SMART) we have demonstrated that transgenic larvae expressing the P450 are hypersensitive to the anticancer drug cyclophosphamide, a procarcinogenic substrate which is activated by the enzyme. This work demonstrates the potential of such transgenic Drosophila strains as an in vivo model for studying the role of specific mammalian drug metabolising enzymes in the pathways and metabolic cascades associated with the action of cytotoxic and carcinogenic chemicals, and also the chemical properties of specific classes of mutagen to be determined.  相似文献   

18.
In studies on the mechanisms of mutagenic and carcinogenic action of captan and captafol-related chloroalkylthiocarboximide fungicides, two effects were tested: (i) the effect of both compounds on the activity of eukaryotic topoisomerases I and II in vitro, and (ii) their mutagenic and recombinagenic activity in the somatic mutation and recombination test (SMART) in wing cells of Drosophila melanogaster. Only captafol inhibited the activity of topoisomerase I (10-20% inhibition of activity in the range of 10-100microM). In contrast, both chemicals decreased the activity of topoisomerase II already at 1microM concentration (50 and 20% inhibition of activity by captafol and captan, respectively).Genotoxicity was tested in vivo by administrating both compounds by acute (3h) and chronic feeding (48h) of 3-day-old larvae. In acute feeding, captan and captafol demonstrated positive results only for small single and total spots in 10-100mM exposure concentration range. Both chemicals were inconclusive for large single spots, as well as for twin spots. In chronic treatment, captan showed positive results only for small single and total spots at 2.5 and 5mM concentrations. Captafol gave inconclusive results over all concentrations tested. The results of the acute treatment experiments which have been performed at very high doses (50% toxicity at higher doses) indicate very weak overall mutagenic activity of both test fungicides.  相似文献   

19.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

20.
A set of 189 chemicals tested in the National Toxicology Program Cancer Bioassay was subjected to analysis by CASE, the Computer-Automated Structure Evaluation system. In the data set, 63% of the chemicals were carcinogens, approx. 40% of the carcinogens were non-genotoxic, i.e., they possessed neither "structural alerts" for DNA reactivity as defined by Ashby and Tennant, 1988, nor were they mutagenic for Salmonella. The data base can be characterized as a "combined rodent" compilation as chemicals were characterized as "carcinogenic" if they were carcinogenic in either rats or mice or both. CASE identified 23 fragments which accounted for the carcinogenicity, or lack thereof, of most of the chemicals. The sensitivity and specificity were unexpectedly high: 1.00 and 0.86, respectively. Based upon the identified biophores and biophobes, CASE performed exceedingly well in predicting the activity of chemicals not included among the 189 in the original set. CASE predicted correctly the carcinogenicity of non-genotoxic carcinogens thereby suggesting a structural commonality in the action of this group of carcinogens. As a matter of fact biophores restricted to non-genotoxic carcinogens were identified as were "non-electrophilic" biophores shared by genotoxic and non-genotoxic carcinogens. The findings suggest that the CASE program may help in the elucidation of the basis of the action of non-genotoxic carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号