首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Information on genetic relationships among individuals is essential to many studies of the behaviour and ecology of wild organisms. Parentage and relatedness assays based on large numbers of single nucleotide polymorphism (SNP) loci hold substantial advantages over the microsatellite markers traditionally used for these purposes. We present a double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) analysis pipeline that, as such, simultaneously achieves the SNP discovery and genotyping steps and which is optimized to return a statistically powerful set of SNP markers (typically 150–600 after stringent filtering) from large numbers of individuals (up to 240 per run). We explore the trade‐offs inherent in this approach through a set of experiments in a species with a complex social system, the variegated fairy‐wren (Malurus lamberti) and further validate it in a phylogenetically broad set of other bird species. Through direct comparisons with a parallel data set from a robust panel of highly variable microsatellite markers, we show that this ddRAD‐seq approach results in substantially improved power to discriminate among potential relatives and considerably more precise estimates of relatedness coefficients. The pipeline is designed to be universally applicable to all bird species (and with minor modifications to many other taxa), to be cost‐ and time‐efficient, and to be replicable across independent runs such that genotype data from different study periods can be combined and analysed as field samples are accumulated.  相似文献   

3.
Shotgun genome sequencing is rapidly emerging as the method of choice for the identification of microsatellite loci in nonmodel organisms. However, to the best of our knowledge, this approach has not been applied to marine algae so far. Herein, we report the results of using the 454 next‐generation sequencing (NGS) platform to randomly sample 36.0 and 40.9 Mbp (139,786 and 139,795 reads, respectively) of the genome of two red algae from the northwest Iberian Peninsula [Grateloupia lanceola (J. Agardh) J. Agardh and a still undescribed new member of the family Cruoriaceae]. Using data mining tools, we identified 4,766 and 5,174 perfect microsatellite loci in 4,344 and 4,504 sequences/contigs from G. lanceola and the Cruoriaceae, respectively. After conservative removal of potentially problematic loci (redundant sequences, mobile elements), primer design was possible for 1,371 and 1,366 loci, respectively. A survey of the literature indicates that microsatellite density in our Rhodophyta is at the low end of the values reported for other organisms investigated with the same technology (land plants and animals). A limited number of loci were successfully tested for PCR amplification and polymorphism finding that they may be suitable for population genetic studies. This study demonstrates that random genome sequencing is a rapid, effective alternative to develop useful microsatellite loci in previously unstudied red algae.  相似文献   

4.
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome‐scale studies to characterize both model and non‐model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome‐wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site‐associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms—enabling the exploration of diverse evolutionary and conservation questions.  相似文献   

5.
The continuing decline in forest elephant (Loxodonta cyclotis) numbers due to poaching and habitat reduction is driving the search for new tools to inform management and conservation. For dense rainforest species, basic ecological data on populations and threats can be challenging and expensive to collect, impeding conservation action in the field. As such, genetic monitoring is being increasingly implemented to complement or replace more burdensome field techniques. Single‐nucleotide polymorphisms (SNPs) are particularly cost‐effective and informative markers that can be used for a range of practical applications, including population census, assessment of human impact on social and genetic structure, and investigation of the illegal wildlife trade. SNP resources for elephants are scarce, but next‐generation sequencing provides the opportunity for rapid, inexpensive generation of SNP markers in nonmodel species. Here, we sourced forest elephant DNA from 23 samples collected from 10 locations within Gabon, Central Africa, and applied double‐digest restriction‐site‐associated DNA (ddRAD) sequencing to discover 31,851 tags containing SNPs that were reduced to a set of 1,365 high‐quality candidate SNP markers. A subset of 115 candidate SNPs was then selected for assay design and validation using 56 additional samples. Genotyping resulted in a high conversion rate (93%) and a low per allele error rate (0.07%). This study provides the first panel of 107 validated SNP markers for forest elephants. This resource presents great potential for new genetic tools to produce reliable data and underpin a step‐change in conservation policies for this elusive species.  相似文献   

6.
Population genetic studies of nonmodel organisms frequently employ reduced representation library (RRL) methodologies, many of which rely on protocols in which genomic DNA is digested by one or more restriction enzymes. However, because high molecular weight DNA is recommended for these protocols, samples with degraded DNA are generally unsuitable for RRL methods. Given that ancient and historic specimens can provide key temporal perspectives to evolutionary questions, we explored how custom‐designed RNA probes could enrich for RRL loci (Restriction Enzyme‐Associated Loci baits, or REALbaits). Starting with genotyping‐by‐sequencing (GBS) data generated on modern common ragweed (Ambrosia artemisiifolia L.) specimens, we designed 20 000 RNA probes to target well‐characterized genomic loci in herbarium voucher specimens dating from 1835 to 1913. Compared to shotgun sequencing, we observed enrichment of the targeted loci at 19‐ to 151‐fold. Using our GBS capture pipeline on a data set of 38 herbarium samples, we discovered 22 813 SNPs, providing sufficient genomic resolution to distinguish geographic populations. For these samples, we found that dilution of REALbaits to 10% of their original concentration still yielded sufficient data for downstream analyses and that a sequencing depth of ~7m reads was sufficient to characterize most loci without wasting sequencing capacity. In addition, we observed that targeted loci had highly variable rates of success, which we primarily attribute to similarity between loci, a trait that ultimately interferes with unambiguous read mapping. Our findings can help researchers design capture experiments for RRL loci, thereby providing an efficient means to integrate samples with degraded DNA into existing RRL data sets.  相似文献   

7.
Cymodocea serrulata is a tropical seagrass species distributed widely in the Indo‐Pacific region. We developed 16 novel microsatellite (simple sequence repeat) markers for C. serrulata using next‐generation sequencing for use in genetic studies. The applicability of these markers was attested by genotyping of 40 individuals collected from a natural population in the Philippines. Of the 16 loci, 15 showed polymorphism. For the 15 polymorphic markers, the number of alleles per locus ranged from two to seven, and the observed and expected heterozygosities ranged from 0.131–1.000 and 0.124–0.788, respectively. These markers are useful tools for elucidating genetic diversity, connectivity, and structure in this foundational coastal species.  相似文献   

8.
The advent of next‐generation sequencing (NGS) technologies has transformed the way microsatellites are isolated for ecological and evolutionary investigations. Recent attempts to employ NGS for microsatellite discovery have used the 454, Illumina, and Ion Torrent platforms, but other methods including single‐molecule real‐time DNA sequencing (Pacific Biosciences or PacBio) remain viable alternatives. We outline a workflow from sequence quality control to microsatellite marker validation in three plant species using PacBio circular consensus sequencing (CCS). We then evaluate the performance of PacBio CCS in comparison with other NGS platforms for microsatellite isolation, through simulations that focus on variations in read length, read quantity and sequencing error rate. Although quality control of CCS reads reduced microsatellite yield by around 50%, hundreds of microsatellite loci that are expected to have improved conversion efficiency to functional markers were retrieved for each species. The simulations quantitatively validate the advantages of long reads and emphasize the detrimental effects of sequencing errors on NGS‐enabled microsatellite development. In view of the continuing improvement in read length on NGS platforms, sequence quality and the corresponding strategies of quality control will become the primary factors to consider for effective microsatellite isolation. Among current options, PacBio CCS may be optimal for rapid, small‐scale microsatellite development due to its flexibility in scaling sequencing effort, while platforms such as Illumina MiSeq will provide cost‐efficient solutions for multispecies microsatellite projects.  相似文献   

9.
Laura E. Timm 《Molecular ecology》2020,29(12):2133-2136
From its inception, population genetics has been nearly as concerned with the genetic data type—to which analyses are brought to bear—as it is with the analysis methods themselves. The field has traversed allozymes, microsatellites, segregating sites in multilocus alignments and, currently, single nucleotide polymorphisms (SNPs) generated by high‐throughput genomic sequencing methods, primarily whole genome sequencing and reduced representation library (RRL) sequencing. As each emerging data type has gained traction, it has been compared to existing methods, based on its relative ability to discern population structural complexity at increasing levels of resolution. However, this is usually done by comparing the gold standard in one data type to the gold standard in the new data type. These gold standards frequently differ in power and in sampling density, both across a genome and throughout a spatial range. In this issue of Molecular Ecology, D’Aloia et al. apply the high‐throughput approach as fully as possible to microsatellites, nuclear loci and SNPs genotyped through an RRL method; this is coupled with a spatially dense sampling scheme. Completing a battery of population genetics analyses across data types (including a series of down‐sampled data sets), the authors find that SNP data are slightly more sensitive to fine‐scale genetic structure, and the results are more resilient to down‐sampling than microsatellites and nonrepetitive nuclear loci. However, their results are far from an unqualified victory for RRL SNP data over all previous data types: the authors note that modest additions to the microsatellites and nuclear loci data sets may provide the necessary analytical power to delineate the fine‐scale genetic structuring identified by SNPs. As always, as the field begins to fully embrace the newest thing, good science reminds us that traditional data types are far from useless, especially when combined with a well‐designed sampling scheme.  相似文献   

10.
The development of microsatellite loci has become more efficient using next‐generation sequencing (NGS) approaches, and many studies imply that the amount of applicable loci is large. However, few studies have sought to quantify the number of loci that are retained for use out of the thousands of sequence reads initially obtained. We analyzed the success rate of microsatellite loci development for three amphibian species using a 454 NGS approach on tetra‐nucleotide motif‐enriched species‐specific libraries. The number of sequence reads obtained differed strongly between species and ranged from 19,562 for Triturus cristatus to 55,626 for Lissotriton helveticus, with 52,075 reads obtained for Calotriton asper. PHOBOS was used to identify sequences with tetra‐nucleotide repeat motifs with a minimum repeat number of ten and high quality primer binding sites. Of 107 sequences for T. cristatus, 316 for C. asper and 319 for L. helveticus, we tested the amplification success, polymorphism, and degree of heterozygosity for 41 primer combinations each for C. asper and T. cristatus, and 22 for L. helveticus. We found 11 polymorphic loci for T. cristatus, 20 loci for C. asper, and 15 loci for L. helveticus. Extrapolated, the number of potentially amplifiable loci (PALs) resulted in estimated species‐specific success rates of 0.15% (T. cristatus), 0.30% (C. asper), and 0.39% (L. helveticus). Compared with representative Illumina NGS approaches, our applied 454‐sequencing approach on specifically enriched sublibraries proved to be quite competitive in terms of success rates and number of finally applicable loci.  相似文献   

11.
Next‐generation sequencing technologies permit rapid and cost‐effective identification of numerous putative microsatellite loci. Here, from the genome sequences of Japanese quail, we developed microsatellite markers containing dinucleotide repeats and employed these for characterisation of genetic diversity and population structure. A total of 385 individuals from 12 experimental and one wild‐derived Japanese quail lines were genotyped with newly developed autosomal markers. The maximum number of alleles, expected heterozygosity and polymorphic information content (PIC) per locus were 10, 0.80 and 0.77 respectively. Approximately half of the markers were highly informative (PIC ≥ 0.50). The mean number of alleles per locus and observed heterozygosity within a line were in the range of 1.3–4.1 and 0.11–0.53 respectively. Compared with the wild‐derived line, genetic diversity levels were low in the experimental lines. Genetic differentiation (FST) between all pairs of the lines ranged from 0.13 to 0.83. Genetic clustering analyses based on multilocus genotypes of individuals showed that most individuals formed clearly defined clusters corresponding to the origins of the lines. These results suggest that Japanese quail experimental lines are highly structured. Microsatellite markers developed in this study may be effective for future genetic studies of Japanese quail.  相似文献   

12.
Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)‐based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP‐based wheat markers have been made available via the use of next‐generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial‐scale breeding programmes. To identify exome‐based co‐dominant SNP‐based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re‐sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were classified as being putatively co‐dominant. Validation of a subset of these putative co‐dominant markers confirmed that 96% were true polymorphisms and 65% were co‐dominant SNP assays. The new co‐dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web‐based database to facilitate their use on genotyping programmes worldwide.  相似文献   

13.
To enable rapid selection of traits in marker‐assisted breeding, markers must be technically simple, low‐cost, high‐throughput and randomly distributed in a genome. We developed such a technology, designated as Multiplex Restriction Amplicon Sequencing (MRASeq), which reduces genome complexity by polymerase chain reaction (PCR) amplification of amplicons flanked by restriction sites. The first PCR primers contain restriction site sequences at 3’‐ends, preceded by 6‐10 bases of specific or degenerate nucleotide sequences and then by a unique M13‐tail sequence which serves as a binding site for a second PCR that adds sequencing primers and barcodes to allow sample multiplexing for sequencing. The sequences of restriction sites and adjacent nucleotides can be altered to suit different species. Physical mapping of MRASeq SNPs from a biparental population of allohexaploid wheat (Triticum aestivum L.) showed a random distribution of SNPs across the genome. MRASeq generated thousands of SNPs from a wheat biparental population and natural populations of wheat and barley (Hordeum vulgare L.). This novel, next‐generation sequencing‐based genotyping platform can be used for linkage mapping to screen quantitative trait loci (QTL), background selection in breeding and many other genetics and breeding applications of various species.  相似文献   

14.
Reduced representation genome sequencing such as restriction‐site‐associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single‐nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome‐wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome‐wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19 703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long‐term effective population size was estimated to range between 132 000 and 1 320 000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.  相似文献   

15.
Establishing the sex of individuals in wild systems can be challenging and often requires genetic testing. Genotyping‐by‐sequencing (GBS) and other reduced‐representation DNA sequencing (RRS) protocols (e.g., RADseq, ddRAD) have enabled the analysis of genetic data on an unprecedented scale. Here, we present a novel approach for the discovery and statistical validation of sex‐specific loci in GBS data sets. We used GBS to genotype 166 New Zealand fur seals (NZFS, Arctocephalus forsteri) of known sex. We retained monomorphic loci as potential sex‐specific markers in the locus discovery phase. We then used (i) a sex‐specific locus threshold (SSLT) to identify significantly male‐specific loci within our data set; and (ii) a significant sex‐assignment threshold (SSAT) to confidently assign sex in silico the presence or absence of significantly male‐specific loci to individuals in our data set treated as unknowns (98.9% accuracy for females; 95.8% for males, estimated via cross‐validation). Furthermore, we assigned sex to 86 individuals of true unknown sex using our SSAT and assessed the effect of SSLT adjustments on these assignments. From 90 verified sex‐specific loci, we developed a panel of three sex‐specific PCR primers that we used to ascertain sex independently of our GBS data, which we show amplify reliably in at least two other pinniped species. Using monomorphic loci normally discarded from large SNP data sets is an effective way to identify robust sex‐linked markers for nonmodel species. Our novel pipeline can be used to identify and statistically validate monomorphic and polymorphic sex‐specific markers across a range of species and RRS data sets.  相似文献   

16.
Parentage analysis is a cornerstone of molecular ecology that has delivered fundamental insights into behaviour, ecology and evolution. Microsatellite markers have long been the king of parentage, their hypervariable nature conferring sufficient power to correctly assign offspring to parents. However, microsatellite markers have seen a sharp decline in use with the rise of next‐generation sequencing technologies, especially in the study of population genetics and local adaptation. The time is ripe to review the current state of parentage analysis and see how it stands to be affected by the emergence of next‐generation sequencing approaches. We find that single nucleotide polymorphisms (SNPs), the typical next‐generation sequencing marker, remain underutilized in parentage analysis but are gaining momentum, with 58 SNP‐based parentage analyses published thus far. Many of these papers, particularly the earlier ones, compare the power of SNPs and microsatellites in a parentage context. In virtually every case, SNPs are at least as powerful as microsatellite markers. As few as 100–500 SNPs are sufficient to resolve parentage completely in most situations. We also provide an overview of the analytical programs that are commonly used and compatible with SNP data. As the next‐generation parentage enterprise grows, a reliance on likelihood and Bayesian approaches, as opposed to strict exclusion, will become increasingly important. We discuss some of the caveats surrounding the use of next‐generation sequencing data for parentage analysis and conclude that the future is bright for this important realm of molecular ecology.  相似文献   

17.
Biodiversity has suffered a dramatic global decline during the past decades, and monitoring tools are urgently needed providing data for the development and evaluation of conservation efforts both on a species and on a genetic level. However, in wild species, the assessment of genetic diversity is often hampered by the lack of suitable genetic markers. In this article, we present Random Amplicon Sequencing (RAMseq), a novel approach for fast and cost‐effective detection of single nucleotide polymorphisms (SNPs) in nonmodel species by semideep sequencing of random amplicons. By applying RAMseq to the Eurasian otter (Lutra lutra), we identified 238 putative SNPs after quality filtering of all candidate loci and were able to validate 32 of 77 loci tested. In a second step, we evaluated the genotyping performance of these SNP loci in noninvasive samples, one of the most challenging genotyping applications, by comparing it with genotyping results of the same faecal samples at microsatellite markers. We compared (i) polymerase chain reaction (PCR) success rate, (ii) genotyping errors and (iii) Mendelian inheritance (population parameters). SNPs produced a significantly higher PCR success rate (75.5% vs. 65.1%) and lower mean allelic error rate (8.8% vs. 13.3%) than microsatellites, but showed a higher allelic dropout rate (29.7% vs. 19.8%). Genotyping results showed no deviations from Mendelian inheritance in any of the SNP loci. Hence, RAMseq appears to be a valuable tool for the detection of genetic markers in nonmodel species, which is a common challenge in conservation genetic studies.  相似文献   

18.
Marker development for marker‐assisted selection in plant breeding is increasingly based on next‐generation sequencing (NGS). However, marker development in crops with highly repetitive, complex genomes is still challenging. Here we applied sequence‐based genotyping (SBG), which couples AFLP®‐based complexity reduction to NGS, for de novo single nucleotide polymorphisms (SNP) marker discovery in and genotyping of a biparental durum wheat population. We identified 9983 putative SNPs in 6372 contigs between the two parents and used these SNPs for genotyping 91 recombinant inbred lines (RILs). Excluding redundant information from multiple SNPs per contig, 2606 (41%) markers were used for integration in a pre‐existing framework map, resulting in the integration of 2365 markers over 2607 cM. Of the 2606 markers available for mapping, 91% were integrated in the pre‐existing map, containing 708 SSRs, DArT markers, and SNPs from CRoPS technology, with a map‐size increase of 492 cM (23%). These results demonstrate the high quality of the discovered SNP markers. With this methodology, it was possible to saturate the map at a final marker density of 0.8 cM/marker. Looking at the binned marker distribution (Figure 2), 63 of the 268 10‐cM bins contained only SBG markers, showing that these markers are filling in gaps in the framework map. As to the markers that could not be used for mapping, the main reason was the low sequencing coverage used for genotyping. We conclude that SBG is a valuable tool for efficient, high‐throughput and high‐quality marker discovery and genotyping for complex genomes such as that of durum wheat.  相似文献   

19.
20.
Molecular markers produced by next‐generation sequencing (NGS) technologies are revolutionizing genetic research. However, the costs of analysing large numbers of individual genomes remain prohibitive for most population genetics studies. Here, we present results based on mathematical derivations showing that, under many realistic experimental designs, NGS of DNA pools from diploid individuals allows to estimate the allele frequencies at single nucleotide polymorphisms (SNPs) with at least the same accuracy as individual‐based analyses, for considerably lower library construction and sequencing efforts. These findings remain true when taking into account the possibility of substantially unequal contributions of each individual to the final pool of sequence reads. We propose the intuitive notion of effective pool size to account for unequal pooling and derive a Bayesian hierarchical model to estimate this parameter directly from the data. We provide a user‐friendly application assessing the accuracy of allele frequency estimation from both pool‐ and individual‐based NGS population data under various sampling, sequencing depth and experimental error designs. We illustrate our findings with theoretical examples and real data sets corresponding to SNP loci obtained using restriction site–associated DNA (RAD) sequencing in pool‐ and individual‐based experiments carried out on the same population of the pine processionary moth (Thaumetopoea pityocampa). NGS of DNA pools might not be optimal for all types of studies but provides a cost‐effective approach for estimating allele frequencies for very large numbers of SNPs. It thus allows comparison of genome‐wide patterns of genetic variation for large numbers of individuals in multiple populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号