首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four isomers of octopine were prepared from pyruvic acid and l- or d-arginine and from α-keto δ-guanidinovaleric acid and l- or d-alanine by reduction with sodium cyanoborohydride. The absolute configuration of d-octopine, the natural occurring isomer being S(l) at the arginine center, and R(d) at the alanine center, was confirmed enzymatically. d-Octopine is the only isomer oxidized by NAD+ in the presence of octopine dehydrogenase from Pecten maximus L. The isomer with configuration S(l) at the alanine center is found to be a competitive inhibitor. Isomers with R(d) configuration at the arginine center show no detectable effect on the enzymatic reaction.  相似文献   

2.
Methionine biosynthesis was studied in rhesus monkey erythrocytes infected with Plasmodium knowlesi malaria which were cultured in vitro with l-[3-14C]serine, methyl-[14C]tetrahydrofolic acid, and l-[35S]homocysteine. Radioactivity derived from [3-14C]serine was detected in approximately equivalent amounts in methionine and thymidylic acid by thin-layer chromatography of acid-hydrolysates of washed erythrocytes. The results with methyl-[14C]tetrahydrofolic acid were inconclusive. Radioactivity from l-[35S]homocysteine also appeared in methionine but the level of homocysteine required for maximal activity was tenfold that of serine. The results indicate that the serine: 5,10-methylenetetrahydrofolic acid: 5-methyl-tetrahydrofolic acid: methionine biosynthetic pathway is present in the P. knowlesi malaria parasite.  相似文献   

3.
A simple, three-step conversion of 1,2-O-isopropylidene-α-d-glucofuranose into l-ascorbic acid, originally described by Bakke and Theander, was used to prepare l-[4-14C]ascorbic acid from milligram amounts of d-[3-14C]glucopyranose in 28% radioisotopic yield. In addition, l-[6-14C]- and l-[U-14C]-ascorbic acid were prepared from d-[1-14C]- and d-[U-14C]-glucopyranose, respectively. The procedure is useful for the synthesis of l-ascorbic acid bearing isotopic hydrogen, carbon, or oxygen atoms at specific positions, subject only to the availability of starting material.  相似文献   

4.
The biosynthesis of the morphinandienone alkaloids norsinoacutine, sinoacutine and flavinantine has been studied using 1-3 H-sinoacutine, 1-3H-norsinoacutine, 1-3H-norsinoacutinols, l-[S-methyl-14C]-methionine, glycine-2-14C, 1-3H-8,14-dihydronorsalutaridine, 1-3 H-8,14-dihydrosalutaridine, 1-3H-sinomenine, 1-3H-isosinomenine, (±)-[2-14C]phenylalanine, (±)-[N-methyl-14C]orientaline and (±)-[N-methyl-14C]reticuline.  相似文献   

5.
Specific incorporation of l-[U-14C]phenylalanine, [U-14C]cinnamic acid and p[2-14C]coumaric acid into bakuchiol has been observed in Psoralea corylifolia. Our findings show that the aromatic moiety along with two carbon atoms of the side chain are biosynthetically derived via phenylpropane pathway and not by the alternate pathway proposed earlier.  相似文献   

6.
A new biosynthetic pathway, which can produce both vitamin B12 and large amounts of porphyrins from isopropanol, was identified in Arthrobacter hyalinus using carbon-13 stable isotope tracer techniques and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy. Studies on the incorporation of [2-13C]isopropanol, [1- or 2-13C]sodium acetate, l-[1-13C]glutamate, and [1-, 2-, 3-, 4-, 5-13C]5-aminolevulinic acid into uroporphyrinogen III showed that isopropanol was metabolized into uroporphyrinogen III through acetyl CoA and that 5-aminolevulinic acid was produced from l-glutamic acid and not via Shemin's pathway.  相似文献   

7.
2(S),4(R)-4-(β-d-Galactopyranosyloxy)-4-isobutylglutamic acid (I) has been isolated from the flowers of Reseda odorata, wherein it occurs in substantial quantity. Hydrolysis of I gives d-galactose, 2(S),4(R)-4-hydroxy-4-isobutylglutamic acid (II) and 3(R),5(S)-3-hydroxy-3-isobutyl-2-pyrrolidone-5-carboxylic acid (III) and its treatment with nitrous acid yields a galactoside of a non-nitrogenous hydroxy acid lactone (IV). The structures of I and its degradation products are supported by PMR, 13C-NMR and other spectroscopic methods. 13C-NMR spectroscopy of the model compound 2-(β-d-galactopyranosyloxy)isobutyric acid confirmed the structure of the natural product. The S- (or l-) configuration at C(2) in the amino acid moiety of I has been established by the use of the Clough—Lutz—Jirgenson rule and the R-configuration at C(4) of the same unit has been assigned tentatively. I represents the first example of a glycoside of a higher plant amino acid in which the carbohydrate residue is linked to an aliphatic hydroxy group.  相似文献   

8.
1l-1,5-Di-O-p-hydroxyphenylacetyl-chiro-inositol was isolated from the leaves of Taraxacumudum, along with seven other secondary metabolites. Identification of the inositol derivative, based on extensive spectroscopic analyses (1H, 13C and 2D NMR) in two solvents, allowed the correction of previously published data and conformational studies. This is the second report on the presence of inositol esters with p-hydroxyphenylacetic acid in plants.  相似文献   

9.
Condensation of 3-(d-erythro -2,3,4-trihydroxy-l-oxobutyl)-2-quinoxalinone and its 6-chloro derivative (obtained by the reaction of d-erythro-2,3-hexodiulosono-1,4-lactone with ortho-diamines) with aryl- or aroyl-hydrazines gave 3-[l-(phenylhydrazono)-d-erythro-2,3,4-trihydroxybutyl]-2-quinoxalinone (5) and relatives. Whereas boiling acetic anhydride causes the loss of two molecules of water per molecule of such hydrazones, affording, the 3-[5-(acetoxymethyl)-l-arylpyrazol-3-yl]-2-quinoxalinones, identical with those obtained from the l-threo isomer, alkali causes the loss of only one molecule, affording, the corresponding flavazoles. Periodate oxidation of 5 gave 3-[l-(phenylhydrazono)glyoxal-l-yl]-2-quinoxalinone, which afforded the corresponding mixed bis(hydrazones). A similar sequence of reactions was conducted with the aryl analogs, 4-phenyl-2,3-dioxobutano-1,4-lactone and its p-chlorophenyl derivative, whereby the 3-[2-aryl-l-(arylhydrazono)-2-hydroxyethyl]2-quinoxalinones, were prepared; these were transformed into 3-(α-hydroxybenzyl)-flavazoles that gave monoacetyl derivatives.  相似文献   

10.
A new natural product, 2(S),3(S)-3-hydroxy-4-methyleneglutamic acid (G3) has been isolated from seeds of Gleditsia caspica. The structure has been established by chemical and spectroscopic methods. Catalytic reduction of G3 yields 2(S),4(S)-4-methylglutamic acid and a new amino acid, 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid. Ozonolysis of G3 followed by oxidation gives 2(S),3(R)-3-hydroxyaspartic acid. The S- (or l-) configurations at C2 in G3 and in 2(S),3(S),4(S)-3-hydroxy-4-methyglutamic acid and the S-configurations at C3 for G3 and 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid and at C4 for 2(S),3(S),4(S)-3-hydroxy-4-methylglutamic acid are inferred from the configurations at C2 in 2(S),4(S)-4-methylglutamic acid and at C2 and C3 in 2(S),3(R)-3-hydroxyaspartic acid. The seeds also contain appreciable quantities of 2(S),3(S),4(R)-3-hydroxy-4-methylglutami c acid (G1) and 2(S),4(R)-4-methylglutamic acid.  相似文献   

11.
Two diastereoisomers, 5R,6R-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (7) and 5S,6S-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (10) were synthesized for evaluation as possible biosynthetic intermediates in the enzymatic transformation of PGH2 or PGG2 into PGI2. The synthetic sequence entails the stereospecific reduction of the 9-keto function in PGE2 methyl ester after protecting the C-11 and C-15 hydroxyls as tbutyldimethylsilyl ethers. The resulting PGF derivative was epoxidized exclusively at the C-5 (6) double bond to yield a mixture of epoxides, which underwent facile rearrangement with SiO2 to yield the 5S,6S and 5R,6R-5-hydroxy-6(9α)-oxido cyclic ethers. It was found that dog aortic microsomes were unable to transform radioactive 9β-5S,6S[3H] or 9β-5R,6R[3H]-5-hydroxy-6(9α)-oxido cyclic ethers into PGI2. Also, when either diastereoisomer was included in the incubation mixture, neither isomer diluted the conversion of [1-14C]arachidonic acid into [1-14C]PGI2.  相似文献   

12.
A new isomer of ricinoleic acid has been found as a minor constituent (1.5%) of the seed oil of Plantago major. This previously unknown β-hydroxyolefinic acid, 9-hydroxy-cis-11-octadecenoic, was characterized by IR, 1H NMR and oxidative cleavage, and the structure was supported by MS.  相似文献   

13.
Binding of l-[3H]cysteine sulfinic acid (CSA) and l-[3H]glutamate were compared in various subcellular fractions and in the presence of a variety of pharmacological and ionic manipulations in order to test the possibility that the two amino acids possessed separate binding sites.The specific l-[3H]cysteine sulfinate binding was found to be enriched maximally in medium and high density synaptic membranes, while the crude mitochondrial synaptosomal fraction displayed the highest l-[3H]glutamate binding. The ratio of l-[3H]cysteine sulfinate binding/l-[3H]glutamate binding was variable across brain regions. Several compounds differentially affected l-[3H]cysteine sulfinate and l-[3H]glutamate binding. l-cysteine sulfinate was the most potent displacer regardless of the binding considered. Finally, while cations produced qualitatively similar effects on the binding of the two amino acids, quantitative differences were evident.In sum, these data revealed the complexity of l-[3H]cysteine sulfinate and l-[3H]glutamate binding. They suggest the existence of several binding sites and that some of these are shared by both substances. However, the results also indicate that separate binding sites for the two amino acids exist in synaptic membrane, giving further support to the hypothesis that cysteine sulfinate serves a neurotransmitter role in the central nervous system.  相似文献   

14.
Excess l-glutamate (glutamate) levels in brain interstitial and cerebrospinal fluids (ISF and CSF, respectively) are the hallmark of several neurodegenerative conditions such as stroke, traumatic brain injury or amyotrophic lateral sclerosis. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As in previous studies, we have established the role of blood glutamate levels in brain neuroprotection, we have now investigated the contribution of the peripheral organs to the homeostasis of glutamate in blood. We have administered naive rats with intravenous injections of either l-[1-14C] Glutamic acid (l-[1-14C] Glu), l-[G-3H] Glutamic acid (l-[G-3H] Glu) or d-[2,3-3H] Aspartic acid (d-[2,3-3H] Asp), a non-metabolized analog of glutamate, and have followed their distribution into peripheral organs. We have observed that the decay of the radioactivity associated with l-[1-14C] Glu and l-[G-3H] Glu was faster than that associated with glutamate non-metabolized analog, d-[2,3-3H] Asp. l-[1-14C] Glu was subjected in blood to a rapid decarboxylation with the loss of 14CO2. The three major sequestrating organs, serving as depots for the eliminated glutamate and/or its metabolites were skeletal muscle, liver and gut, contributing together 92% or 87% of total l-[U-14C] Glu or d-[2,3-3H] Asp radioactivity capture. l-[U-14C] Glu and d-[2,3-3H] Asp showed a different organ sequestration pattern. We conclude that glutamate is rapidly eliminated from the blood into peripheral tissues, mainly in non-metabolized form. The liver plays a central role in glutamate metabolism and serves as an origin for glutamate metabolites that redistribute into skeletal muscle and gut. The findings of this study suggest now that pharmacological manipulations that reduce the liver glutamate release rate or cause a boosting of the skeletal muscle glutamate pumping rate are likely to cause brain neuroprotection.  相似文献   

15.
Intraperitoneal administration to rats of D- or DL-α-hydrazunoimidazolylpropionic acid was found to produce a substantial inactivation of hepatic histidine ammonia-lysase (EC 4.3.1.3) in vivo. Proportional to this loss in enzyme activity was an impairment of the ability of treated rats to oxidize l-[ring-2-14C] histidine to 14CO2. Rats in which hepatic histadine ammonia-lyase activity was either depressed by dl-hydrazunoimidazolylproprionic acid injection or elevated by feeding a high protein diet displayed proportionately altered rates of 3H2O release into plasma water following l-[3-H]histidine administration. Plasma l-histidine clearance following loading with this amino acid was similarly affected by these treatments. Administration of dl-α-hydrazinoimisazolyl-proprionic acid to rats was also found to inactivate non-specifically pyridoxal 5-phosphate enzymes in vivo; pyridoxine injection was found to reverse the dl-α-hydrazinoimidazolylproprionic acid-induced inactivation of hepatic aspartate aminotransferase (EC 2.6.1.1) in vivo, but not that of hepatic histidine ammonia-lyase. These findings demonstrate that histidine ammonia-lyase is the rate-limiting factor in l-histidine degradation in the rat. The potential usefulness of dl-hydrazinoimidazolylproprionic acid in the production of an animal model for histidinemia (hereditary histidine ammonia-lyase deficiency) is discussed.  相似文献   

16.
The effect of derivatization with 2-amino-2-methyl-propanol on trans-3-hexadecenoic acid was investigated as part of the identification of the trans-3-hexadecenoic acid in two Nova Scotian seaweeds. After the extraction of the total fatty acids and their methylation, the monoenoic trans fraction was isolated by thin-layer chromatography on silica gels impregnated with silver nitrate. This fraction was first analyzed by gas chromatography and showed the presence of the trans-3-hexadecenoic acid; other fatty acids were not present. The isolated fraction was derivatized with 2-amino-2-methyl-propanol prior to analysis by gas chromatography/mass spectrometry. The chromatogram obtained showed the presence of a positional isomer formed during the derivatization of the trans-3-hexadecenoic acid. The mass spectrum showed a prominent [M + H]+ and diagnostic ions for the identification of the unknown isomer, corresponding to the 4,4-dimethyloxazoline (DMOX) derivative of a presumed 2-hexadecenoic acid. Definitive confirmation of the ethylenic bond position was obtained by oxidative ozonolysis of the DMOX derivatives of the fatty acids under investigation. Infrared spectroscopy showed that the artifact formed during the DMOX derivatization of trans-3-hexadecenoic acid was the DMOX derivative of cis-2-hexadecenoic acid.  相似文献   

17.
The terminal carbon of palmitic acid, traced with 14C, is preferentially incorporated into carbon 4 of hydroxybutyrate formed by hepatocytes and perfused livers from 18- to 19-day-old rats and perfused livers from fasted adult rats. However, 14C from [13-14C]palmitic acid is incorporated into carbon 1 of the hydroxybutyrate to the same extent as any one of the first 12 carbons of palmitic acid as assessed with [1-14C]palmitic acid and [6-14C]palmitic acid. Therefore, the hydroxybutyrate is formed via hydroxymethylglutaryl-CoA, i.e., it is in the d configuration, and hydrolysis of l-hydroxybutyryl-CoA, the intermediate in the β oxidation of the palmitate, does not occur. Further, a negligible amount of 14C remains in hydroxybutyrate formed from 14C-labeled palmitic acid by isolated hepatocytes and perfused livers from the young rats, when the hydroxybutyrate is treated with d-(?)-3-hydroxybutyrate dehydrogenase to convert the d isomer to acetoacetate. Thus, l-(+)-3-hydroxybutyrate is not produced by rat liver as assessed using these preparations.  相似文献   

18.
Isolation and identification of l-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and l-1-methyl-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline from seeds and callus of S. hassjoo are described. Administration of [β-14C]-labelled DOPA to a callus culture of this legume resulted in the incorporation of radioactivity into l-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, l-1-methyl-3-carboxy-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and stizolobic acid, which was confirmed by constant specific radioactivity after co-crystallization with authentic samples of each compound.  相似文献   

19.
20.
Peter Jurtshuk  Linda McManus 《BBA》1974,368(2):158-172
l-(+)-Glutamate oxidation that is non-pyridine nucleotide dependent is readily carried out by a membrane-bound enzyme in Azotobacter vinelandii strain O. Enzyme activity concentrates in a membranous fraction that is associated with the Azotobacter electron transport system. This l-glutamate oxidation is not dependent on externally added NAD+, NADP+, FAD, or FMN for activity. O2, phenazine methosulfate and ferricyanide all served as relatively good electron acceptors for this reaction; while cytochrome c and nitrotetrazolium blue function poorly in this capacity. Paper chromatographic analyses revealed that the 2,4-dinitrophenylhydrazine derivative formed from the enzymatic oxidation of l-glutamate was α-ketoglutarate, while microdiffusion studies indicated that ammonia was also a key end product. These findings suggest that the overall reaction is an oxidative deamination. Ammonia formation was found to be stoichiometric with the amount of oxygen consumed (2 : 1 respectively, on a molar basis). The oxidation of glutamate was limited to the l-(+)-enantiomer indicating that this reaction is not the generalized type carried out by the l-amino acid oxidase. This oxidoreductase is functionally related to the Azotobacter electron transport system: (a) the activity concentrates almost exclusively in the electron transport fraction; (b) the l-glutamate oxidase activity is markedly sensitive to electron transport inhibitors, i.e. 2-n-heptyl-4-hydroxyquinoline-N-oxide, cyanide, and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione; and (c) spectral studies on the Azotobacter R3 fraction revealed that a substantial amount of the flavoprotein (non-heme iron) and cytochrome (a2, a1, b1, c4 and c5) are reduced by the addition of l-glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号