首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Erratum     
AN acute angle appears to be less acute than it really is1,2. The effect has an obvious similarity to the tilt after-effect, the only difference in procedure being that the lines forming the acute angle are presented simultaneously in one case and successively in the other. Nevertheless, Blakemore et al.2 consider that the effect they studied is not the tilt after-effect, on the grounds of different temporal properties: their effect builds up and dissipates very rapidly, which, they argue, is inconsistent with known adaptation phenomena, such as Gibson after-effects3,4, which have long time constants.  相似文献   

2.
Our aim was to compare sensitivity for horizontal and vertical disparity corrugations and to resolve whether these stimuli are processed by similar or radically different underlying mechanisms. We measure global disparity sensitivity as a function of carrier spatial frequency for equi-detectable carriers and found a similar optimal carrier relationship for vertical and horizontal stimuli. Sensitivity as a function of corrugation spatial frequency for stimuli of comparable spatial summation and composed of optimal, equi-detectable narrowband carriers did not significantly differ for vertical and horizontal stimuli. A small anisotropy was revealed when fixed, high contrast broadband carriers were used. In a separate discrimination-at-threshold experiment, multiple mechanisms of similar tuning were revealed to underlie the detection of both vertical and horizontal disparity corrugations. We conclude that the processing of the horizontal and vertical disparity corrugations occurs along similar lines.  相似文献   

3.
Space and time in visual context   总被引:3,自引:0,他引:3  
No sensory stimulus is an island unto itself; rather, it can only properly be interpreted in light of the stimuli that surround it in space and time. This can result in entertaining illusions and puzzling results in psychological and neurophysiological experiments. We concentrate on perhaps the best studied test case, namely orientation or tilt, which gives rise to the notorious tilt illusion and the adaptation tilt after-effect. We review the empirical literature and discuss the computational and statistical ideas that are battling to explain these conundrums, and thereby gain favour as more general accounts of cortical processing.  相似文献   

4.
F J?hnig  K Harlos  H Vogel  H Eibl 《Biochemistry》1979,18(8):1459-1468
The changes in bilayer structure induced by surface charges in the case of an ionizable lipid were studied by X-ray diffraction, Raman spectroscopy, and film-balance measurements. With increasing surface charge in the ordered phase, the X-ray results show a decrease in bilayer thickness, whereas the hydrocarbon chain packing stays essentially constant, the Raman data signify that the internal chain ordering does not change, and the monolayer studies show a lateral expansion of the bilayer. These results are interpreted in terms of a tilt of the chains caused by the surface charges on the polar heads. The tilt angle between the direction of the chains and the bilayer normal is obtained by a detailed theoretical evaluation. The tilt allows for a better understanding of the electrostatically induced shift of the phase transition temperature and of the shift induced by the binding of water in the case of lecithin in contrast ethanolamine.  相似文献   

5.
The transformation of spatial patterns and their storage in short term memory by shunting neural networks are studied herein. Various mechanisms are described for real-time regulation of the amount of contrast with which a pattern will be stored. Parametric studies are described for the amount of contrast in the network responses to patterns presented at variable background or overall activity levels. Mechanisms for removing spurious peak splits and other disinhibitory responses are described. Furman's (1965) results on processing of patterns by shunting networks are generalized and reanalysed. Periodic responses (stable and unstable) corresponding to the time scale of slow cortical waves can be generated if a tonic input is set between two threshold activity levels. Their frequency as a function of tonic input size is unimodal. Order-preserving limit cycles are never found in STM; hence sustained slow oscillations as a mechanism for storing a pattern in STM are ruled out in favor of steady states (i.e., fast oscillations) with spatially graded activity levels. Such slow oscillations can, nonetheless, continuously retune the network's responsiveness to the patterns that perturb it.  相似文献   

6.

Purpose

To measure horizontal and vertical lamina cribrosa (LC) tilt angles and investigate associated factors using prototype optical coherence tomography (OCT) with a broad wavelength laser light source.

Design

Cross sectional study.

Methods

Twenty-eight no glaucoma eyes (from 15 subjects) and 25 glaucoma eyes (from 14 patients) were enrolled. A total of 300 optic nerve head B-scans were obtained in 10 µm steps and the inner edge of Bruch''s membrane opening (BMO) was identified as the reference plane. The vertical and horizontal angles between BMO line and approximate the best-fitting line for the surface of the LC were measured and potential associated factors were estimated with univariate and multivariate logistic regression analyses.

Results

The median (interquartile range) horizontal and vertical tilt angles were 7.10 (2.43–11.45) degrees and 4.15 (2.60–6.85) degrees in eyes without glaucoma and 8.50 (4.40–14.10) degrees and 9.30 (6.90–14.15) degrees in glaucoma eyes, respectively. The refractive errors had a statistically significant association with horizontal LC tilt angles (coefficients, −1.53 per diopter) and glaucoma had a significant correlation with vertical tilt angles (coefficients, 6.56) using multiple logistic regression analysis (p<0.001).

Conclusions

OCT allowed evaluation of the internal tilting of the LC compared with the BMO. The horizontal internal LC tilt angle was correlated with refractive errors, corresponding to myopic physiological changes, and vertical internal LC tilt was correlated with glaucoma, corresponding to glaucomatous pathological changes. These parameters have important implications for investigation of the correlation between myopia, glaucoma and LC morphological features.  相似文献   

7.
The effects of novelty on low-level visual perception were investigated in two experiments using a two-alternative forced-choice tilt detection task. A target, consisting of a Gabor patch, was preceded by a cue that was either a novel or a familiar fractal image. Participants had to indicate whether the Gabor stimulus was vertically oriented or slightly tilted. In the first experiment tilt angle was manipulated; in the second contrast of the Gabor patch was varied. In the first, we found that sensitivity was enhanced after a novel compared to a familiar cue, and in the second we found sensitivity to be enhanced for novel cues in later experimental blocks when participants became more and more familiarized with the familiar cue. These effects were not caused by a shift in the response criterion. This shows for the first time that novel stimuli affect low-level characteristics of perception. We suggest that novelty can elicit a transient attentional response, thereby enhancing perception.  相似文献   

8.
Substantial in situ measurements on clear days in a variety of marine environments at depths in the water down to 200 m have demonstrated the ubiquitous daytime presence of sun-related e-vector (=plane of polarization) patterns. In most lines of sight the e-vectors tilt from horizontal towards the sun at angles equal to the apparent underwater refracted zenith angle of the sun. A maximum tilt-angle of approximately 48.5 degrees , is reached in horizontal lines of sight at 90 degrees to the sun's bearing (the plane of incidence). This tilt limit is set by Snell's window, when the sun is on the horizon. The biological literature since the 1980s has been pervaded with assumptions that daytime aquatic e-vectors are mainly horizontal. This review attempts to set the record straight concerning the potential use of underwater e-vectors as a visual compass and to reopen the field to productive research on aquatic animals' orientation and navigation.  相似文献   

9.

Purpose

To investigate whether lamina cribrosa (LC) defects are associated with optic disc morphology in primary open angle glaucoma (POAG) eyes with high myopia.

Methods

A total of 129 POAG patients and 55 age-matched control subjects with high myopia were evaluated. Three-dimensional scan images obtained by swept source optical coherence tomography were used to detect LC defects. Radial B-scans and infrared images obtained by spectral domain optical coherence tomography were used to measure β-peripapillary atrophy (PPA) lengths with and without Bruch''s membrane (BM) (temporal, nasal, superior, and inferior), tilt angle (vertical and horizontal), and disc diameter (transverse and longitudinal). Peripapillary intrachoroidal cavitations (PICCs), disc area, ovality index, and cyclotorsion of the optic disc were analyzed as well.

Results

LC defects were found in 70 of 129 (54.2%) POAG eyes and 1 of 55 (1.8%) control eyes (P<0.001). Age, sex, spherical equivalent, axial length, intraocular pressure, and central corneal thickness were not significantly different among POAG eyes with LC defects, POAG eyes without LC defects, and control eyes. Temporal PPA lengths without BM in all three groups correlated significantly with vertical and horizontal tilt angles, although no PPA length with BM correlated significantly with any tilt angle. PICCs were detected more frequently in POAG eyes with LC defects than those without LC defects (P = 0.01) and control eyes (P = 0.02). POAG eyes with LC defects showed a smaller ovality index (P = 0.004), longer temporal PPA without BM (P<0.001), and larger vertical/horizontal tilt angles (vertical, P<0.001; horizontal, P = 0.01), and transverse diameter (P = 0.01). In multivariate analysis for the presence of LC defects, presence of POAG (P<0.001) and vertical tilt angle (P<0.001) were identified as significant.

Conclusions

The presence of LC defects was associated with myopic optic disc morphology in POAG eyes with high myopia.  相似文献   

10.
Dresp B 《Spatial Vision》2000,13(4):343-357
Thresholds for line contrast detection (experiment 2) were measured with a two-alternative temporal forced-choice procedure as a function of the spatial position of a vertical target line with regard to two co-linear context lines. The different spatial positions of the target line corresponded to values near the position discrimination threshold (experiment 1) reflecting the just detectable lateral offset, or non-co-linearity, between the context lines which were vertically separated by about 100 minutes of visual arc. Target and context lines were vertically separated by about 30 minutes of arc, had equal contrast polarity in one case, and opposite contrast polarity in the other. Strong line contrast detection facilitation is found at perceptually co-linear target locations. This facilitation decreases noticeably at a horizontal target offset that corresponds to the alignment threshold measured with the context lines. The effects are independent of the relative contrast polarity of target and context and, as shown in a third experiment, also independent of both the relative length or number of lines, and the magnitude of their absolute co-axial separation. This independence seems to hold, provided individual line length and co-axial distance between lines are larger than what appears to be the lower limit of the long-range spatial domain for orientation or contour integration (i.e. 20 minutes of arc), as determined by previous studies. The findings reported here suggest that alignment thresholds are likely to define a critical lateral boundary in long-range detection facilitation with co-linear lines. They support models of contour integration based on interactions between neural mechanisms that integrate local signals of contrast, orientation, and relative position or end-to-end alignment. Such mechanisms may help to explain the formation of representations of virtual contours and object contours in human perception.  相似文献   

11.
A computational procedure is described for assigning the absolute hand of the structure of a protein or assembly determined by single-particle electron microscopy. The procedure requires a pair of micrographs of the same particle field recorded at two tilt angles of a single tilt-axis specimen holder together with the three-dimensional map whose hand is being determined. For orientations determined from particles on one micrograph using the map, the agreement (average phase residual) between particle images on the second micrograph and map projections is determined for all possible choices of tilt angle and axis. Whether the agreement is better at the known tilt angle and axis of the microscope or its inverse indicates whether the map is of correct or incorrect hand. An increased discrimination of correct from incorrect hand (free hand difference), as well as accurate identification of the known values for the tilt angle and axis, can be used as targets for rapidly optimizing the search or refinement procedures used to determine particle orientations. Optimized refinement reduces the tendency for the model to match noise in a single image, thus improving the accuracy of the orientation determination and therefore the quality of the resulting map. The hand determination and refinement optimization procedure is applied to image pairs of the dihydrolipoyl acetyltransferase (E2) catalytic core of the pyruvate dehydrogenase complex from Bacillus stearothermophilus taken by low-dose electron cryomicroscopy. Structure factor amplitudes of a three-dimensional map of the E2 catalytic core obtained by averaging untilted images of 3667 icosahedral particles are compared to a scattering reference using a Guinier plot. A noise-dependent structure factor weight is derived and used in conjunction with a temperature factor (B=-1000A(2)) to restore high-resolution contrast without amplifying noise and to visualize molecular features to 8.7A resolution, according to a new objective criterion for resolution assessment proposed here.  相似文献   

12.
ABSTRACT. The rhythm of 'abdominal respiratory movements' (ARMs) in partly tethered cave-crickets was recorded via correlated hindleg movements associated with abdominal ventilation, and analysed with respect to postural changes (cricket placed horizontally or vertically) under the following stimulus regimes: touch stimuli of constant duration but varying rates were presented to the hind legs independently of the ARM rhythm; touch stimuli with constant delays were triggered by the previous ARM; and light stimuli were presented, preceding the touch stimuli. With constantly spaced touch stimuli, on- and off-effects are visible in the number of ARMs per time unit and this is more pronounced in the horizontal than in the vertical position. Continuous modulations of ARMs patterning (tonic effects) are revealed in free run cycles which are intercalated in rhythmic driving series: at intertouch lengths of 20 s such free run cycling is faster under vertical than under horizontal conditions. With the vertical stance it is delayed by additional light. Even the kind of vertical orientation causes tonic effects. Thus crickets that face downward exhibit a slower ARM rhythm than those facing upward. Under entrainment to constantly delayed touches, two parameters of ARM rhythm ('basic period' and 'consecutive period') were studied to elucidate the hypothetical cycling of the pacemaker under different stances. Under horizontal conditions the 'basic periods' are shortened if the delay of touch does not exceed 0.2 periods of free run cycling. However, in the vertical position, the 'basic periods' are prolonged. With delay times exceeding 0.5 periods of free run cycle, the 'consecutive periods' are lengthened if the cricket is oriented vertically, but remain unaffected under horizontal conditions. On the basis of these results, a model for resetting and sensory modulation of ARM control is presented.  相似文献   

13.
The articular facet of a superior articular process of the sacrum is directed backward, inward, and upward with marked variations. 4 angles characterize the orientation of this facet: a) The relative angle of tilt: i.e. the angle between the articular facet and the upper end-plate of the sacrum, measured in a sagittal plane. b) The absolute angle of tilt: i.e. the angle between the articular facet and the horizontal plane, measured in a sagittal plane. c) The tilted part-angle of opening: i.e. the angle between the articular facet and the sagittal plane, measured in a plane parallel to the upper end-plate of the sacrum. d) The horizontal part-angle of opening: i.e. the angle between the articular facet and the sagittal plane, measured in a horizontal plane. These 4 angles are determined by characteristic straights within the articular facet and certain reference planes (upper end-plate of the sacrum, horizontal plane, sagittal plane). Only 2 intersecting straights suffice for an adequate determination of a geometrical plane; therefore, if we know the relative angle of tilt and the tilted part-angle of opening, we are able to construct or to calculate the absolute angle of tilt as well as the horizontal part-angle of opening by using the range of inclination of the sacrum. The shape as well as the orientation of the articular facets at the superior articular processes of the sacrum do not depend on the inclination of the pelvis nor on the inclination of the sacrum nor on the range of the lumbosacral angle. Only the absolute angle of tilt shows a reference to the inclination of the sacrum because the relative angle of tilt shows a certain constancy. The orientation of the articular facets is slightly influenced by static moments, but considerably determined by dynamical requirements. At spines with irregular numbers of praesacral vertebrae, the orientation of the lumbosacral articular facets do not differ from the orientation of these facets at spines with the regular number of 24 praesacral vertebrae. This, however, does not prove right at spines, that have a lumbosacral "transitional vertebra". Such lumbosacral transitional vertebrae detract much from the stability of the lumbosacral region of the spine.  相似文献   

14.
Corbett JE  Carrasco M 《PloS one》2011,6(9):e24470
Performance in most visual discrimination tasks is better along the horizontal than the vertical meridian (Horizontal-Vertical Anisotropy, HVA), and along the lower than the upper vertical meridian (Vertical Meridian Asymmetry, VMA), with intermediate performance at intercardinal locations. As these inhomogeneities are prevalent throughout visual tasks, it is important to understand the perceptual consequences of dissociating spatial reference frames. In all studies of performance fields so far, allocentric environmental references and egocentric observer reference frames were aligned. Here we quantified the effects of manipulating head-centric and retinotopic coordinates on the shape of visual performance fields. When observers viewed briefly presented radial arrays of Gabors and discriminated the tilt of a target relative to homogeneously oriented distractors, performance fields shifted with head tilt (Experiment 1), and fixation (Experiment 2). These results show that performance fields shift in-line with egocentric referents, corresponding to the retinal location of the stimulus.  相似文献   

15.
Tinsley CJ 《Bio Systems》2008,92(2):159-167
This article explores the theoretical basis of coding within topographic representations, where neurons encoding specific features such as locations, are arranged into maps. A novel type of representation, termed non-specific, where each neuron does not encode specific features is also postulated. In common with the previously described distributed representations [Rolls, E.T., Treves, A., 1998. Neural Networks and Brain Function. Oxford University Press, Oxford], topographic representations display an exponential relationship between stimuli encoded and both number of neurons and maximum firing rate of those neurons. The non-specific representations described here display a binomial expansion between the number of stimuli encoded and the sum of the number of neurons and the maximum firing rate; therefore groups of non-specific neurons usually encode less stimuli than equivalent topographic layers of neurons. Lower and higher order sensory regions of the brain use either topographic or distributed representations to encode information. It is proposed that non-specific representations may occur in regions of the brain where different types of information may be represented by the same neurons, as occurs in the prefrontal cortex.  相似文献   

16.
Non-contact anterior cruciate ligament (ACL) injuries account for approximately 70% of ACL ruptures and often occur during a sudden change in direction or pivot. Decreased neuromuscular control of the trunk in a controlled perturbation task has previously been associated with ACL injury incidence, while knee abduction moments and tibial internal rotation moments have been associated with ACL strain and ACL injury incidence. In this study, the association between movement of the trunk during a run-to-cut maneuver and loading of the knee during the same activity was investigated. External knee moments and trunk angles were quantified during a run-to-cut maneuver for 29 individuals. The trunk angles examined were outside tilt (frontal plane angle of the torso from vertical), angle between the ground reaction force (GRF) and the torso in the plane containing the GRF and shoulders (torso-GRF_shoulders); and angle between GRF and torso in the plane containing the GRF and pelvis (torso-GRF_pelvis). Significant positive associations were found between torso angles and peak knee abduction moments (outside tilt, p=0.002; and torso-GRF_shoulders, p=0.036) while a significant negative association was found between peak tibial internal rotation moment and outside tilt (p=0.021). Because the peaks of these moments occur at different times and minimal axial rotation moment is observed at peak knee abduction moment (-0.29±0.46%BW*ht), the positive association between peak knee abduction moment and torso lean suggests that increasing torso lean may increase ACL load and risk of injury.  相似文献   

17.
The human visual system exaggerates the difference between the tilts of adjacent lines or grating patches. In addition to this tilt illusion, we found that oblique flanks reduced acuity for small changes of tilt in the centre of the visual field. However, no flanks--regardless of their tilts--decreased sensitivity to contrast. Thus, the foveal tilt illusion should not be attributed to orientation-selective lateral inhibition. Nor is it similar to conventional crowding, which typically does not impair letter recognition in the fovea. Our observers behaved as though the reference orientation (horizontal) had a small tilt in the direction of the flanks. We suggest that the extent of this re-calibration varies randomly over trials, and we demonstrate that this stochastic re-calibration can explain flank-induced acuity loss in the fovea.  相似文献   

18.
A new method for the mathematical analysis of large metabolic networks is presented. Based on the fact that the occurrence of a metabolic reaction generally requires the existence of other reactions providing its substrates, series of metabolic networks are constructed. In each step of the corresponding expansion process those reactions are incorporated whose substrates are made available by the networks of the previous generations. The method is applied to the set of all metabolic reactions included in the KEGG database. Starting with one or more seed compounds, the expansion results in a final network whose compounds define the scope of the seed. Scopes of all metabolic compounds are calculated and it is shown that large parts of cellular metabolism can be considered as the combined scope of simple building blocks. Analyses of various expansion processes reveal crucial metabolites whose incorporation allows for the increase in network complexity. Among these metabolites are common cofactors such as NAD+, ATP, and coenzyme A. We demonstrate that the outcome of network expansion is in general very robust against elimination of single or few reactions. There exist, however, crucial reactions whose elimination results in a dramatic reduction of scope sizes. It is hypothesized that the expansion process displays characteristics of the evolution of metabolism such as the temporal order of the emergence of metabolic pathways. [Reviewing Editor : Dr. David Pollock]  相似文献   

19.
Small knee flexion angle during landing has been proposed as a potential risk factor for sustaining noncontact ACL injury. A brace that promotes increased knee flexion and decreased posterior ground reaction force during landing may prove to be advantageous for developing prevention strategies. Forty male and forty female recreational athletes were recruited. Three-dimensional videographic and ground reaction force data in a stop-jump task were collected in three conditions. Knee flexion angle at peak posterior ground reaction force, peak posterior ground reaction force, the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff were compared among conditions: knee extension constraint brace, nonconstraint brace, and no brace. The knee extension constraint brace significantly increased knee flexion angle at peak posterior ground reaction force. Both knee extension constraint brace and nonconstraint brace significantly decreased peak posterior ground reaction force during landing. The brace and knee extension constraint did not significantly affect the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff. A knee extension constraint brace exhibits the ability to modify the knee flexion angle at peak posterior ground reaction force and peak posterior ground reaction force during landing.  相似文献   

20.
  • 1.1. The change in color of the lateral stripe of the neon tetra, Paracheirodon innesi, is due to the motile activity of the iridophores which are sensitive to light and adrenergic stimuli.
  • 2.2. The light-reflecting platelets within the iridophore were found to be arranged regularly, making an acute angle of depression with respect to the median plane of the body.
  • 3.3. When epi-illumination was applied to the skin piece laid horizontally on the stage of a light microscope (with an angle of incidence of about 40°) and the wavelength of the reflected light introduced into the objective lens was monitored, the spectral peak was found to shift to longer wavelengths with the application of K+-rich saline, with a simultaneous decrease in reflectance.
  • 4.4. Using the identical fiber assembly for light irradiation and measurements of reflected light, we found that the angle of incident light producing the maximum reflectance, which corresponded to the inclination of the platelets, increased with the shift in the spectral peak toward longer wavelengths.
  • 5.5. It appears from our results that a change in the angle of inclination of the platelets triggered by adrenergic stimuli may give rise to a change in the distance between the platelets which, in turn, leads to the shift in the spectral peak.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号