首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Minimal requirements for rotation of bacterial flagella.   总被引:4,自引:6,他引:4       下载免费PDF全文
An in vitro system of cell envelopes from Salmonella typhimurium with functional flagella was used to determine the minimal requirements for flagellar rotation. Rotation in the absence of cytoplasmic constituents could be driven either by respiration or by an artificially imposed chemical gradient of protons. No specific ionic requirements other than protons (or hydroxyls) were found for the motor function.  相似文献   

2.
3.
4.
Molecular motors of the bacterial flagella   总被引:1,自引:0,他引:1  
The bacterial flagellum, which is responsible for motility, is a biological nanomachine consisting of a reversible rotary motor, a universal joint, a helical screw, and a protein export apparatus dedicated for flagellar assembly. The motor is fueled by an inward-directed electrochemical gradient of protons or sodium ions across the cytoplasmic membrane. The motor consists of a rotor, a drive shaft, a bushing, and about a dozen stator units. The flagellar protein export apparatus is located at the cytoplasmic side of the rotor. Interactions between the rotor and the stators and those between soluble and membrane components of the export apparatus are highly dynamic. The structures of flagellar basal body components including those of the export apparatus, being revealed at high resolution by X-ray crystallography and electron cryomicroscopy and cryotomography, are giving insights into their mechanisms.  相似文献   

5.
6.
Genetics and chemistry of bacterial flagella   总被引:27,自引:0,他引:27  
  相似文献   

7.
8.
9.
The interaction of isolated flagellar filaments of Bacillus brevis var. G.-B. P+ with skeletal muscle myosin has been investigated. Bacterial flagellar filaments co-precipitate with myosin at low ionic strength (at the conditions of myosin aggregation). Addition of bacterial flagellar filaments to myosin led to inhibition of its K+-EDTA- and Ca2+-ATPase activity, but had no influence on Mg2+-ATPase. Monomeric protein of bacterial flagella filaments (flagellin) did not co-precipitate with myosin and had no influence on its ATPase activity. The flagella filaments did not co-precipitate with myosin in the presence of F-actin if it was mixed with myosin before the filaments. If the flagella filaments were added to myosin solution before the addition of F-actin the amount of filaments and actin in myosin precipitate were comparable. In this case the presence of flagella filaments decreased activation of myosin Mg2+-ATPase by actin to 25-30%. Thus the bacterial flagellar filaments are able to interact with myosin and modify its ATPase activity. Probably, these properties of filaments are caused by resemblance of flagellin and actin. For instance, the unique origin of these proteins may be the reason of such resemblance.  相似文献   

10.
11.
12.
13.
Evolution: reducible complexity -- the case for bacterial flagella   总被引:1,自引:0,他引:1  
A recent paper, which will surely figure centrally in the debate between evolutionists and Intelligent Design creationists, proposes a (perhaps too simple) scheme for the evolution of bacterial flagella.  相似文献   

14.
15.
A simple, rapid method for demonstrating bacterial flagella   总被引:1,自引:0,他引:1  
We developed a simple, rapid method for demonstrating flagellation of bacteria using the fluorescent protein stain NanoOrange (Molecular Probes, Eugene, Oreg.). The NanoOrange reagent binds to hydrophobic regions of proteins, which results in substantial enhancement of fluorescence. Unbound reagent is essentially nonfluorescent. NanoOrange fluorescently stained bacterial cell bodies, as well as flagella and other appendages, which could be directly observed by epifluorescence microscopy. Detection of flagella was further improved by using a charge-coupled device camera for image capture and processing. The reliability of the method was tested by using 37 pure cultures of marine bacteria. Detection of flagella on the isolates by NanoOrange staining was compared to detection by transmission electron microscopy (TEM). For 36 of 37 cultures, the two methods yielded the same results. In one case, flagella were detected by TEM but not by NanoOrange, although the difference may be attributable to differences between the culture preparations. NanoOrange staining is rapid (10 to 15 min) and does not require fixation or dehydration, so live samples can be stained. Since NanoOrange is a general protein stain and works directly in seawater, it may also prove to be useful for staining other proteinaceous material that is of interest to aquatic microbial ecologists.  相似文献   

16.
Genetics and chemistry of bacterial flagella.   总被引:7,自引:0,他引:7       下载免费PDF全文
  相似文献   

17.
18.
19.
A rapid, simple method for staining bacterial flagella.   总被引:20,自引:0,他引:20  
A simple modification of Gray's flagellar staining procedure is described. It can be used on air-dried smears or directly on wet mounts of motile bacteria. The stained bacterial flagella can be observed with phase-contrast or bright-field optics. No rigorous cleaning of slides, counterstains, or any washing procedures are required with the staining method, making it very suitable for routine examinations.  相似文献   

20.
Variation in shape and arrangement of bacterial flagella   总被引:5,自引:8,他引:5       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号