首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flagella of Salmonella and other bacteria are constructed from molecules of the protein flagellin in a way which permits relatively easy transition between members of a family of distinct stable left and right-handed helical waveforms. Changes of waveform, particularly between “normal” (left-handed) and “curly” (right-handed) play an important role in the switch from smooth swimming to tumbling in chemotaxis. This paper establishes some mechanical properties of model flagella built from bi-stable subunits, which in turn clarifies the mechanics of the changes of waveform which occur, in a viscous fluid environment, at various points in the swimming cycle.Available data on the joining of different helical waveforms in a single filament, supplemented by information on the way in which helical filaments flatten down in preparation for electron microscopy, are well-fitted by the mechanical behaviour of an assembly of mechanical subunits having some simple distinctive design features. The same arrangement makes possible an explanation for the formation of flagellar-like but straight polymers from Salmonella flagellin in the presence of high concentrations of NaCl.  相似文献   

2.
Cells of Pseudomonas rhodos 9-6 produce two morphologically distinct flagella termed plain and complex, respectively. Fine structure analyses by electron microscopy and optical diffraction showed that plain flagellar filaments are cylinders of 13-nm diameter composed of globular subunits like normal bacterial flagella. The structure comprises nine large-scale helical rows of subunits intersecting four small-scale helices of pitch angle 25 degrees . Complex filaments have a conspicuous helical sheath, 18-nm wide, of three close-fitting helical bands, each about 4.7-nm wide, separated by axial intervals, 4.7 nm wide, running at an angle of 27 degrees . The internal core has similar but not identical substructure to plain filaments. Unlike plain flagella, the complex species is fragile and does not aggregate in bundles. Mutants bearing only one of two types of flagellum were isolated. Cells with plain flagella showed normal translational motion, and cells with complex flagella showed rapid spinning. Isolated plain flagella consist of a 37,000-dalton subunit separable into two isoproteins. Complex filaments consist of a 55,000-dalton protein; a second 43,000-dalton protein was assigned to complex flagellar hooks. The results indicate that plain and complex flagella are entirely different in structure and composition and that the complex type represents a novel flagellar species. Its possible mode of action is discussed.  相似文献   

3.
Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L‐type or R‐type, having slightly different conformations and inter‐protofilaments interactions. By mixing different ratios of L‐type and R‐type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site‐directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non‐motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right‐handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine’s model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.  相似文献   

4.
Hydrodynamics predicts that swimming bacteria generate a propulsion force when a helical flagellum rotates because rotating helices necessarily translate at a low Reynolds number. It is generally believed that the flagella of motile bacteria are semirigid helices with a fixed pitch determined by hydrodynamic principles. Here, we report the characterization of three mutations in laboratory strains of Escherichia coli that produce different steady-state flagella without losing cell motility. E. coli flagella rotate counterclockwise during forward swimming, and the normal form of the flagella is a left-handed helix. A single amino acid exchange A45G and a double mutation of A48S and S110A change the resting flagella to right-handed helices. The stationary flagella of the triple mutant were often straight or slightly curved at neutral pH. Deprotonation facilitates the helix formation of it. The helical and curved flagella can be transformed to the normal form by torsion upon rotation and thus propel the cell. These mutations arose in the long-term laboratory cultivation. However, flagella are under strong selection pressure as extracellular appendages, and similar transformable flagella would be common in natural environments.  相似文献   

5.
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin β subunit more strongly than the α subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnβ subunits. Interestingly, chaperonin complexes containing two β subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of β subunits. The result suggests that all four β tentacles of prefoldin interact with the helical protrusions of CPN in the PFD–CPN complex as the previously proposed model that two adjacent PFD β subunits seem to interact with two CPN adjacent subunits.  相似文献   

6.
The genome of a halophilic archaeon Haloarcula marismortui carries two flagellin genes, flaA2 and flaB. Previously, we demonstrated that the helical flagellar filaments of H. marismortui were composed primarily of flagellin FlaB molecules, while the other flagellin (FlaA2) was present in minor amounts. Mutant H. marismortui strains with either flagellin gene inactivated were obtained. It was shown that inactivation of the flaA2 gene did not lead to changes in cell motility and helicity of the filaments, while the cells with inactivated flaB lost their motility and flagella synthesis was stopped. Two FlaB flagellin forms having different sensitivities to proteolysis were found in the flagellar filament structure. It is speculated that these flagellin forms may ensure the helical filament formation. Moreover, the flagella of a psychrotrophic haloarchaeon Halorubrum lacusprofundi were isolated and characterized for the first time. H. lacusprofundi filaments were helical and exhibited morphological polymorphism, although the genome contained a single flagellin gene. These results suggest that the mechanisms of flagellar helicity may differ in different halophilic archaea, and sometimes the presence of two flagellin genes, in contrast to Halobacterium salinarum, is not necessary for the formation of a functional helical flagellum.  相似文献   

7.
Native flagellar hooks from a polarly flagellated bacterium, Caulobacter crescentus, and polyhooks from a peritrichously flagellated bacterium, Salmonella typhimurium. have been studied by densitometry of electron micrographs of negatively stained specimens, followed by computerized Fourier analysis and three-dimensional reconstruction. The two structures are remarkably similar. In both cases, the subunits are arranged along a right-handed basic helix of 2.3 nm pitch with successive subunits separated by an azimuthal angle of 64 to 65 °, and there is a pronounced system of continuous 6-start grooves and ridges on the surface of the structures. The subunit of Salmonella (Mr 42,000, versus 70,000 for Caulobacter) is somewhat thinner and yields a smaller overall hook diameter. The “bent finger” subunit shape and orientation in both cases suggests that the hook could bend readily by a sliding motion in the 11-start direction at inner radii, with the 6-start groove preventing collision at outer radii. The basic helical pitch of the Salmonella hook structure, and the number of subunits per basic helical turn (5.56) makes it highly compatible with the Salmonella flagellar filament (2.6 nm pitch. 5.51 subunits per turn); so also does the elongated shape and tilt angle of the hook and flagellin subunits in the respective structures. The two structures may therefore conjoin directly in the intact flagellum, although participation of a minor protein is not ruled out by the data.  相似文献   

8.
We have found that several kinds of helical flagella from Salmonella and Escherichia become straight in the presence of 0·5 m-citric acid at pH values below 4·0, while the straight flagella from a mutant Salmonella (SJ814) are transformed into a helical shape under the same conditions. These transformations are reversible and transitional.Current models of bacterial flagella (Calladine, 1976,1978; Kamiya, 1976) predict that the family of distinct wave-forms should include two types of straight flagella, which have either an extreme right-handed twist (about 7 ° at the surface of the flagellum) or an extreme left-handed twist (2 ° to 3 °). As the inclination of the near-longitudinal rows of subunits in the Salmonella SJ814 flagellum (O'Brien &; Bennett, 1972) agrees closely with the degree of twisting predicted for the right-handed type, this flagellum has been considered to be the right-handed type. We have determined that the basic (1-start) helix in flagella is right-handed, using the method of Finch (1972). This fact, together with the selection rule (O'Brien &; Bennett, 1972), strongly suggests that the near-longitudinal rows in an SJ814 flagellum are right-handed, in agreement with the prediction. However, our optical diffraction and X-ray diffraction studies have revealed that the near-longitudinal rows of subunits in the citric acid-induced straight flagella and in the straight flagella from a mutant E. coli (Kondoh &; Yanagida, 1975) tilt at an angle of 2 ° to 3 ° with respect to the flagellar axis. This inclination is probably left-handed. Thus the predicted presence of the two types of straight flagella seems to be proved.  相似文献   

9.
The helical filaments of the bacterial flagella so far studied seem to be universal in the bacterial kingdom. Despite the variation in flagellin molecular masses, which range from 24 kDa to 62 kDa in different species, there are only two forms: either the so-called Normal (left-handed) or the Curly (right-handed). The Normal and Curly helical forms are asymmetric; the two characteristic helical parameters, which are the pitch and diameter, of Normal filaments are twice those of Curly filaments. Both the universality of these two helical forms and their asymmetry are biological puzzles. We found that the marine bacteria Idiomarina loihiensis have flagella with left-handed Curly-like filaments. Analysis of the polymorphic forms under different pH conditions showed that the Curly-like filaments are actually Normal filaments having a smaller pitch and diameter than those of Salmonella typhimurium. A minor modification of Calladine's model for a filament lattice can explain the variant helical forms. Pseudomonas aeruginosa filaments also belong to the family of I.loihiensis filaments. Thus, there are at least two families of flagella filaments.  相似文献   

10.
The bacterial flagellum transforms its shape into several distinguishable helical shapes (polymorphs) under various environmental conditions. Polymorphs of each type of flagellum stay on a circle in the pitch-diameter (P versus πD) plot, indicating that they all belong to one family. Previously, we showed that the flagellar family of a marine bacterium Idiomarina loihiensis (Family II) differed from the conventional flagellar family of Salmonella typhimurium (Family I). The pitch and diameter of Family II flagella are half those of Family I flagella. We have suggested that Family I encompasses peritrichous flagella, while Family II forms a polar flagellum. In this study, we have surveyed the polymorphs of flagella from 18 other species and categorized their family types. Previous observations were confirmed; Family I form peritrichous flagella and Family II form polar flagella. Furthermore, we found that lateral flagella had helical parameters much smaller than those of the other two Families and thus belong to a new family (Family III).  相似文献   

11.
The structure of the transmembrane subunit (TM) of the retroviral envelope glycoprotein (Env) is highly conserved among most retrovirus genera and includes a pair of cysteines that forms an intramolecular disulfide loop within the ectodomain. Alpha-, gamma-, and deltaretroviruses have a third cysteine, adjacent to the loop, which forms a disulfide bond between TM and the surface subunit (SU) of Env, while lentiviruses, which have noncovalently associated subunits, lack this third cysteine. The Betaretrovirus genus includes Jaagsiekte sheep retrovirus (JSRV) and mouse mammary tumor virus (MMTV), as well as many endogenous retroviruses. Envelope subunit association had not been characterized in the betaretroviruses, but lack of a third cysteine in the TM ectodomain suggested noncovalently associated subunits. We tested the Env proteins of JSRV and MMTV, as well as human endogenous retrovirus K (HERV-K)108—a betaretrovirus-like human endogenous retrovirus—for intersubunit bonding and found that, as in the lentiviruses, the Env subunits lack an intersubunit disulfide bond. Since these results suggest that the number of cysteines in the TM loop region readily distinguishes between covalent and noncovalent structure, we surveyed endogenous retroviral TM sequences in the genomes of vertebrates represented in public databases and found that (i) retroviruses with noncovalently associated subunits have been present during all of anthropoid evolution and (ii) the noncovalent env motif is limited to mammals, while the covalent type is found among five vertebrate classes. We discuss implications of these findings for retroviral evolution, cross-species transmissions, and recombination events involving the env gene.  相似文献   

12.
The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3′ end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.  相似文献   

13.
A pairing attraction between helical turns of subunits in a cylindrical crystal, like that in the dahlemense strain of tobacco mosaic virus, can cause the axis of the rod or crystal to become helical. This is true only if the number of helices is odd. The shape of a bacterial flagellum can be accounted for then if, as Caspar &; Holmes and Klug have suggested, rows of its subunits exhibit such a pairing interaction. Klug's thoughts on bacterial flagella are developed and extended into a model that accounts qualitatively for geometry, movement and polymorphism of flagella. If the number of helices between which there is a pairing interaction is odd, then the crystal is an imperfect cylindrical crystal. The geometry of such crystals is described. They contain a line defect, termed here an antiphase boundary, across which the pairing interaction is reversed. The boundary is a line of expansion on the convex side of a curved filament. Movement of flagella is explained by circumferential displacement of the antiphase boundary. One polymorphic form can convert to another if a dislocation passes along it. Straight flagella are perfect cylindrical crystals with no antiphase boundary.  相似文献   

14.
Length control of flagella represents a simple and tractable system to investigate the dynamics of organelle size. Models for flagellar length control in the model organism Chlamydomonas reinhardtii have focused on the length dependence of the intraflagellar transport (IFT) system, which manages the delivery and removal of axonemal subunits at the tip of the flagella. One of these cargoes, tubulin, is the major axonemal subunit, and its frequency of arrival at the tip plays a central role in size control models. However, the mechanisms determining tubulin dynamics at the tip are still poorly understood. We discovered a loss-of-function mutation that leads to shortened flagella and found that this was an allele of a previously described gene, SHF1, whose molecular identity had not been determined. We found that SHF1 encodes a Chlamydomonas orthologue of Crescerin, previously identified as a cilia-specific TOG-domain array protein that can bind tubulin via its TOG domains and increase tubulin polymerization rates. In this mutant, flagellar regeneration occurs with the same initial kinetics as in wild-type cells but plateaus at a shorter length. Using a computational model in which the flagellar microtubules are represented by a differential equation for flagellar length combined with a stochastic model for cytoplasmic microtubule dynamics, we found that our experimental results are best described by a model in which Crescerin/SHF1 binds tubulin dimers in the cytoplasm and transports them into the flagellum. We suggest that this TOG-domain protein is necessary to efficiently and preemptively increase intraflagella tubulin levels to offset decreasing IFT cargo at the tip as flagellar assembly progresses.  相似文献   

15.
Secretion and assembly of regular surface structures in Gram-negative bacteria   总被引:19,自引:0,他引:19  
Bacteria synthesize large-sized surface structures through the ordered polymerization of protein subunits. This results in planar or tubular regular structures that have evolved to accomplish specific functions related to the particular environment in which these bacteria are found. Tubular assemblies known as flagella are the most complex structures known in bacteria and consist of a helical rigid filament, a torsion adapter or hook and a proton-fueled rotator known as the basal body. Pili or fimbriae are less complicated helical filaments, which consist of a major subunit and 3-5 minor subunits or pilins, whose main function is the attachment to specific surfaces. Planar structures known as S-layers are the simplest of these regular assemblies and are generally made up of a single subunit packed as a bidimensional crystal around the whole cell surface. Most of the components of these structures have to be secreted through the inner membrane (IM), the periplasm and the outer membrane (OM) before reaching their final destination. The so called general secretory pathway (GSP), or type II secretion system, appears to be implicated in this process to varying degrees, depending on the structure considered. A few S-layers and pili require GSP components but also need specific terminal branches, such as the well known chaperone-usher pathway. On the other hand, only two of the nearly 40 proteins involved in flagellar assembly are dependent on the GSP, while the external components are secreted through a specific pathway similar to the type III systems identified in some pathogens. Moreover, secretion of subunits of S-layers using dedicated type I machinery, without the involvement of any GSP component, has also been observed.  相似文献   

16.
Yersinia enterocolitica biovar 1B is one of a number of strains pathogenic to humans in the genus Yersinia. It has three different type III secretion systems, Ysc, Ysa, and the flagella. In this study, the effect of flagella on biofilm formation was evaluated. In a panel of 31 mutant Y. enterocolitica strains, we observed that mutations that abolish the structure or rotation of the flagella greatly reduce biofilm formation when the bacteria are grown under static conditions. These results were further evaluated by assessing biofilm formation under continuous culture using a flow cell chamber. The results confirmed the important contribution of flagella to the initiation of biofilm production but indicated that there are differences in the progression of biofilm development between static growth and flow conditions. Our results suggest that flagella play a critical role in biofilm formation in Y. enterocolitica.  相似文献   

17.
Urinary tract infections caused by Escherichia coli are very common health problem in the developed countries. The virulence of the uropathogenic E. coli Dr+ IH11128 is determined by Dr fimbriae, which are homopolymeric structures composed of DraE subunits with the DraD protein capping the fiber. In this study, we have analyzed the structural and biochemical properties of biofilms developed by E. coli strains expressing Dr fimbriae with or without the DraD tip subunit and the surface-exposed DraD protein. We have also demonstrated that these E. coli strains form biofilms on an abiotic surface in a nutrient-dependent fashion. We present evidence that Dr fimbriae are necessary during the first stage of bacterial interaction with the abiotic surface. In addition, we reveal that the DraD alone is also sufficient for the initial surface attachment at an even higher level than Dr fimbriae and that chloramphenicol is able to reduce the normal attachment of the analyzed E. coli. The action of chloramphenicol also shows that protein synthesis is required for the early events of biofilm formation. Additionally, we have identified reduced exopolysaccharide coverage in E. coli that express only Dr fimbrial polyadhesins at the cell surface with or without the DraD capping subunit.  相似文献   

18.
The structure of the bacterial flagellar hook produced by a mutant of Caulobacter crescentus was studied by electron microscopy, optical diffraction, and digital image processing techniques. The helical surface lattice of the hook is defined by a single, right-handed genetic helix having a pitch of about 23 Å, an axial rise per subunit of 4 Å and an azimuthal angle between subunits of 64·5 °. The lattice is also characterized by intersecting families of 5-start, 6-start and long-pitch 11-start helices. These helical parameters are remarkably similar to those determined for the flagellar filaments from several strains of gram-negative bacteria. The technique of three-dimensional image reconstruction (DeRosier & Klug, 1968) was applied to nine of the better preserved specimens and the diffraction data from five of these were correlated and averaged and used to generate an average three-dimensional model of the hook. The pattern of density modulations in the three-dimensional model is suggestive of an elongated, curved shape for the hook subunit (100 Å × 25 Å × 25 Å). The subunits are situated in the lattice of the polyhook such that their long axes are tilted about 45 ° with respect to the hook axis. The subunits appear to make contact with each other along the 6-start helices at a radius of 80 Å and also along the 11-start helices at a radius of 65 Å. Few structural features are revealed at radii between 15 å and 45 Å and, therefore, we are unable to decide to what extent the hook subunits extend into this region. The most striking characteristic of the model is the presence of deep, broad, continuous 6-start helical grooves extending from an inner radius of about 50 Å to the perimeter of the particle at 105 Å radius. Normal hooks usually appear curved in electron micrographs and sometimes so are the mutant hooks; the prominent 6-start grooves appear to allow for bending with minimal distortion of matter in the outer regions of the hook. A round stain-filled channel about 25 Å in diameter runs down the center of the polyhook. Such a channel supports a model for flagellar assembly in which flagellin subunits travel through the interior of the flagellum to the growing distal end of the filament.  相似文献   

19.
Escherichia coli 30 S ribosomal subunits are inactive in a number of specific functions when Mg2+ concentration is reduced to 1 mM, and activity is recovered on heating under appropriate ionic conditions. When active and inactive forms were treated with N-ethyl maleimide, both forms reacted to a similar extent, but the reagent attached mostly to different proteins. Moreover, it caused irreversible inactivation only when reacting with the inactive form of the subunit. Though the activating treatment failed to restore activity to these subunits it did expose the same sulfhydryl groups as are available in the active state for reaction with the maleimide.Different ribosomal activities were eliminated at different maleimide concentrations, permitting the assignment of specific functions to sulfhydryl groups of specific ribosomal proteins. Protein S18 appears to be involved in subunit association, binding of fMet-tRNA and of aminoacyl-tRNA to the P-site. Proteins S1, S14 and S21 are all or in part involved in the binding of aminoacyl-tRNA to the A-site and in the binding of the antibiotic dihydrostreptomycin.The reaction with N-ethyl maleimide thus provides a criterion other than biological activity for characterizing different ribosomal forms and a tool for mapping the 30 S subunit for specific functional sites.  相似文献   

20.
An X-ray structure analysis of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis provides structural details of the pigment-binding sites. The photosynthetic pigments are found in rather hydrophobic environments provided by the subunits L and M. In addition to apolar interactions, the bacteriochlorophylls of the primary electron donor (`special pair') and the bacteriopheophytins, but not the accessory bacteriochlorophylls, form hydrogen bonds with amino acid side chains of these protein subunits. The two branches of pigments which originate at the primary electron donor, and which mark possible electron pathways across the photosynthetic membrane, are in different environments and show different hydrogen bonding with the protein: this may help to understand why only one branch of pigments is active in the light-driven electron transfer. The primary electron acceptor, a menaquinone (QA), is in a pocket formed by the M subunit and interacts with it by hydrophobic contacts and hydrogen bonds. Competitive inhibitors of the secondary quinone QB (o-phenanthroline, the herbicide terbutryn) are bound into a pocket provided by the L subunit. Apart from numerous van der Waals interactions they also form hydrogen bonds to the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号