共查询到20条相似文献,搜索用时 10 毫秒
1.
Shiyu Ma Jin Ma Xiaoyi Mai Xujie Zhao Liheng Guo Minzhou Zhang 《Journal of cellular and molecular medicine》2019,23(8):5454-5465
Danqi soft capsule (DQ) is a traditional Chinese medicine containing Salvia miltiorrhiza and Panax notoginseng; it is safe and efficient in treating ischaemic heart diseases. The purpose of the present study was to assess whether DQ could prevent infarct border zone (IBZ) remodelling and decrease ventricular arrhythmias occurrence in post‐myocardial infarction (MI) stage. MI was induced by a ligation of the left anterior descending coronary artery. DQ was administered to the post‐MI rats started from 1 week after MI surgery for 4 weeks. The results showed that DQ treatment significantly attenuated tachyarrhythmia induction rates and arrhythmia score in post‐MI rats. In echocardiography, DQ improved left ventricular (LV) systolic and diastolic function. Histological assessment revealed that DQ significantly reduced fibrotic areas and myocyte areas, and increased connexin (Cx) 43 positive areas in IBZ. Western blot revealed that DQ treatment significantly reduced the protein expression levels of type I and III collagens, α‐smooth muscle actin (α‐SMA), transforming growth factor‐β1 (TGF‐β1) and Smad3 phosphorylation, while increasing Cx43 amounts. Overall, these findings mainly indicated that DQ intervention regulates interstitial fibrosis, Cx43 expression and myocyte hypertrophy by TGF‐β1/Smad3 pathway in IBZ, inhibits LV remodelling and reduces vulnerability to tachyarrhythmias after MI. This study presents a proof of concept for novel antiarrhythmic strategies in preventing IBZ remodelling, modifying the healed arrhythmogenic substrate and thus reducing susceptibility to ventricular arrhythmias in the late post‐MI period. 相似文献
2.
Baoyin Zhao Zhaofu Liao Shang Chen Ziqiang Yuan Chen Yilin Kenneth K.H. Lee Xufeng Qi Xiaotao Shen Xin Zheng Thomas Quinn Dongqing Cai 《Journal of cellular and molecular medicine》2014,18(5):780-789
The midterm effects of cardiac telocytes (CTs) transplantation on myocardial infarction (MI) and the cellular mechanisms involved in the beneficial effects of CTs transplantation are not understood. In the present study, we have revealed that transplantation of CTs was able to significantly decrease the infarct size and improved cardiac function 14 weeks after MI. It has established that CT transplantation exerted a protective effect on the myocardium and this was maintained for at least 14 weeks. The cellular mechanism behind this beneficial effect on MI was partially attributed to increased cardiac angiogenesis, improved reconstruction of the CT network and decreased myocardial fibrosis. These combined effects decreased the infarct size, improved the reconstruction of the LV and enhanced myocardial function in MI. Our findings suggest that CTs could be considered as a potential cell source for therapeutic use to improve cardiac repair and function following MI, used either alone or in tandem with stem cells. 相似文献
3.
Sirt3 is essential for apelin‐induced angiogenesis in post‐myocardial infarction of diabetes 下载免费PDF全文
Xuwei Hou Heng Zeng Xiaochen He Jian‐Xiong Chen 《Journal of cellular and molecular medicine》2015,19(1):53-61
Heart failure following myocardial infarction (MI) is the leading cause of death in diabetic patients. Angiogenesis contributes to cardiac repair and functional recovery in post‐MI. Our previous study shows that apelin (APLN) increases Sirtuin 3 (Sirt3) expression and ameliorates diabetic cardiomyopathy. In this study, we further investigated the direct role of Sirt3 in APLN‐induced angiogenesis in post‐MI model of diabetes. Wild‐type (WT) and Sirt3 knockout (Sirt3KO) mice were induced into diabetes by i.p. streptozotocin (STZ). STZ mice were then subjected to MI followed by immediate intramyocardial injection with adenovirus‐apelin (Ad‐APLN). Our studies showed that Sirt3 expression was significantly reduced in the hearts of STZ mice. Ad‐APLN treatment resulted in up‐regulation of Sirt3, angiopoietins/Tie‐2 and VEGF/VEGFR2 expression together with increased myocardial vascular densities in WT‐STZ+MI mice, but these alterations were not observed in Sirt3KO‐STZ+MI mice. In vitro, overexpression of APLN increased Sirt3 expression and angiogenesis in endothelial progenitor cells (EPC) from WT mice, but not in EPC from Sirt3KO mice. APLN gene therapy increases angiogenesis and improves cardiac functional recovery in diabetic hearts via up‐regulation of Sirt3 pathway. 相似文献
4.
Yue Cheng Haitao Li Long Wang Jianyi Li Wen Kang Panpan Rao Fang Zhou Xi Wang Congxin Huang 《Journal of biophotonics》2020,13(7)
Cardiac optogenetics facilitates the painless manipulation of the heart with optical energy and was recently shown to terminate ventricular tachycardia (VT) in explanted mice heart. This study aimed to evaluate the optogenetic‐based termination of induced VT under ischemia in an open‐chest rat model and to develop an optimal, optical‐manipulation procedure. VT was induced by burst stimulation after ligation of the left anterior descending coronary artery, and the termination effects of the optical manipulation, including electrical anti‐tachycardia pacing (ATP) and spontaneous recovery, were tested. Among different multisegment optical modes, four repeated illuminations of 1000 ms in duration with 1‐second interval at a 20‐times intensity threshold on the right ventricle achieved the highest termination rate of 86.14% ± 4.145%, higher than that achieved by ATP and spontaneous termination. We demonstrated that optogenetic‐based cardioversion is feasible and effective in vivo, with the underlying mechanism involving the light‐triggered, ChR2‐induced depolarization of the illuminated myocardium, in turn generating an excitation that disrupts the preexisting reentrant wave front. 相似文献
5.
Zhuzhi Wen Zun Mai Haifeng Zhang Yangxin Chen Dengfeng Geng Shuxian Zhou Jingfeng Wang 《Journal of cellular and molecular medicine》2012,16(11):2549-2563
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite continuous advancements in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. The emergence of stem cell transplantation approaches has recently represented promising alternatives to stimulate myocardial regeneration. Regarding their tissue‐specific properties, cardiac stem cells (CSCs) residing within the heart have advantages over other stem cell types to be the best cell source for cell transplantation. However, time‐consuming and costly procedures to expanse cells prior to cell transplantation and the reliability of cell culture and expansion may both be major obstacles in the clinical application of CSC‐based transplantation therapy after MI. The recognition that the adult heart possesses endogenous CSCs that can regenerate cardiomyocytes and vascular cells has raised the unique therapeutic strategy to reconstitute dead myocardium via activating these cells post‐MI. Several strategies, such as growth factors, mircoRNAs and drugs, may be implemented to potentiate endogenous CSCs to repair infarcted heart without cell transplantation. Most molecular and cellular mechanism involved in the process of CSC‐based endogenous regeneration after MI is far from understanding. This article reviews current knowledge opening up the possibilities of cardiac repair through CSCs activation in situ in the setting of MI. 相似文献
6.
A novel protein‐engineered hepatocyte growth factor analog released via a shear‐thinning injectable hydrogel enhances post‐infarction ventricular function 下载免费PDF全文
Amanda N. Steele Lei Cai Vi N. Truong Bryan B. Edwards Andrew B. Goldstone Anahita Eskandari Aaron C. Mitchell Laura M. Marquardt Abbygail A. Foster Jennifer R. Cochran Sarah C. Heilshorn Y. Joseph Woo 《Biotechnology and bioengineering》2017,114(10):2379-2389
7.
Jiao KL Li YG Zhang PP Chen RH Yu Y 《Journal of cellular and molecular medicine》2012,16(6):1342-1351
The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P < 0.05) after MI and the incidence of VT or VF evoked by PES (21.1% versus 55%, P < 0.05). Angiotensin II type 1 receptor expression was significantly increased in BZ and NIZ sections after MI, which was down-regulated by valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression. 相似文献
8.
Hui‐Fang Song Sheng He Shu‐Hong Li Jun Wu Wenjuan Yin Zhengbo Shao Guo‐qing Du Jie Wu Jiao Li Richard D. Weisel Subodh Verma Jun Xie Ren‐Ke Li 《Journal of cellular and molecular medicine》2020,24(16):9409-9419
Prevention of infarct scar thinning and dilatation and stimulation of scar contracture can prevent progressive heart failure. Since microRNA 145 (miR‐145) plays an important role in cardiac fibroblast response to wound healing and cardiac repair after an myocardial infarction (MI), using a miR‐145 knock‐out (KO) mouse model, we evaluated contribution of down‐regulation of miR‐145 to cardiac fibroblast and myofibroblast function during adverse cardiac remodelling. Cardiac function decreased more and the infarct size was larger in miR‐145 KO than that in WT mice after MI and this phenomenon was accompanied by a decrease in cardiac fibroblast‐to‐myofibroblast differentiation. Quantification of collagen I and α‐SMA protein levels as well as wound contraction revealed that transdifferentiation of cardiac fibroblasts into myofibroblasts was lower in KO than WT mice. In vitro restoration of miR‐145 induced more differentiation of fibroblasts to myofibroblasts and this effect involved the target genes Klf4 and myocardin. MiR‐145 contributes to infarct scar contraction in the heart and the absence of miR‐145 contributes to dysfunction of cardiac fibroblast, resulting in greater infarct thinning and dilatation. Augmentation of miR‐145 could be an attractive target to prevent adverse cardiac remodelling after MI by enhancing the phenotypic switch of cardiac fibroblasts to myofibroblasts. 相似文献
9.
目的:实验观察左心室脱血回注循环辅助法对急性心肌梗死血流动力学的改善作用.方法:18只杂种犬分两组制作急性心肌梗死泵衰竭模型,治疗组给予左心室脱血回注循环辅助,对照组不进行治疗.观察比较两组间心律失常、死亡率、外周动脉压、肺动脉毛细血管楔嵌压(PCWP)、左心室舒张末期压(LVEDP)、左心室内径的变化.结果:治疗组室性期外收缩、心室纤颤发生率和死亡率显著低于对照组;对照组的外周动脉收缩压低于80 mmHg以下,治疗组维持在100mmHg以上(P<0.01);治疗组PCWP和LVEDP值在45 min以后的各时段低于对照组(P<0.01);治疗组的左室舒张末期内径小于对照组(P<0.01).结论:左心室脱血回注循环辅助法能够减少急性心肌梗死泵衰竭的心室纤颤发生率和死亡率,有显著改善血流动力学、防止梗死后心肌扩张和有效的左心室辅助作用. 相似文献
10.
11.
Ewa K. Zuba‐Surma Yiru Guo Hisham Taher Santosh K. Sanganalmath Greg Hunt Robert J. Vincent Magda Kucia Ahmed Abdel‐Latif Xian‐Liang Tang Mariusz Z. Ratajczak Buddhadeb Dawn Roberto Bolli 《Journal of cellular and molecular medicine》2011,15(6):1319-1328
Adult bone marrow‐derived very small embryonic‐like stem cells (VSEL‐SCs) exhibit a Sca‐1+/Lin–/CD45– phenotype and can differentiate into various cell types, including cardiomyocytes and endothelial cells. We have previously reported that transplantation of a small number (1 × 106) of freshly isolated, non‐expanded VSEL‐SCs into infarcted mouse hearts resulted in improved left ventricular (LV) function and anatomy. Clinical translation, however, will require large numbers of cells. Because the frequency of VSEL‐SCs in the marrow is very low, we examined whether VSEL‐SCs can be expanded in culture without loss of therapeutic efficacy. Mice underwent a 30 min. coronary occlusion followed by reperfusion and, 48 hrs later, received an intramyocardial injection of vehicle (group I, n= 11), 1 × 105 enhanced green fluorescent protein (EGFP)‐labelled expanded untreated VSEL‐SCs (group II, n= 7), or 1 × 105 EGFP‐labelled expanded VSEL‐SCs pre‐incubated in a cardiogenic medium (group III, n= 8). At 35 days after myocardial infarction (MI), mice treated with pre‐incubated VSEL‐SCs exhibited better global and regional LV systolic function and less LV hypertrophy compared with vehicle‐treated controls. In contrast, transplantation of expanded but untreated VSEL‐SCs did not produce appreciable reparative benefits. Scattered EGFP+ cells expressing α‐sarcomeric actin, platelet endothelial cell adhesion molecule (PECAM)‐1, or von Willebrand factor were present in VSEL‐SC‐treated mice, but their numbers were very small. No tumour formation was observed. We conclude that VSEL‐SCs expanded in culture retain the ability to alleviate LV dysfunction and remodelling after a reperfused MI provided that they are exposed to a combination of cardiomyogenic growth factors and cytokines prior to transplantation. Counter intuitively, the mechanism whereby such pre‐incubation confers therapeutic efficacy does not involve differentiation into new cardiac cells. These results support the potential therapeutic utility of VSEL‐SCs for cardiac repair. 相似文献
12.
Jin P Wang E Wang YH Huang W Kuang W Sun C Hu S Zhang H 《Journal of cellular and molecular medicine》2012,16(3):637-648
The purpose of this study was to investigate the fate of transplanted cells in the central zone of myocardial infarction (MI), and to clarify the relationship between the injection-site impact and the efficacy of cell therapy. MI was created by coronary ligation in female rats. Three weeks later, 3-million labelled male bone marrow mesenchymal stem cells (BMSCs) were directly injected into the border (BZC group) or central zone (CZC group) of MI area. As a control, culture medium was injected into the same sites. Cell survival was evaluated by quantitative real-time polymerase chain reaction, and apoptosis was assayed with TUNEL and caspase-3 staining. Four weeks after transplantation, heart function and cardiac morphometry were evaluated by echocardiography and Masson's Trichrome staining, respectively. Angiogenesis and myogenesis were detected by immunofluorescence staining. After cell transplantation into the border or central zone, there was no cell migration between the different zones of MI. BMSCs in the CZC group exhibited no difference in apoptotic percentage, in the long-term survival, when compared with those in the BZC group. However, they did effectively promote angiogenesis and cellular myogenic differentiation. Although cell delivery in the central zone of MI had no effect on the recovery of heart function compared with the BZC group, the retained BMSCs could still increase the scar thickness, and subsequently exhibit a trend in the reverse remodelling of ventricular dilation. Hence, we concluded that the central zone of MI should not be ignored during cell-based therapy. Multiple site injection (border+central zone) is strongly recommended during the procedure of cell transplantation. 相似文献
13.
14.
Radovan J Vaclav P Petr W Jan C Michal A Richard P Martina P 《Molecular and cellular biochemistry》2006,293(1-2):71-78
Objectives: To analyze the predictive value of cardiac collagen metabolism “in vivo" in patients with myocardial infarction (MI) treated with percutaneous coronary intervention (PCI). Design: Forty-five patients (age 66 ± 8.27) underwent biochemical analysis for cardiac collagen metabolism (groups A, B and C); 30 patients with their first MI were treated with successful PCI (group A; n = 30), group B (n = 5) were MI patients with unsuccessful PCI. Group C were patients without MI (n = 10), they underwent elective diagnostic coronary angiography only. The collagen metabolism was analyzed in acute and subacute MI phases by using serum blood markers: the carboxy-terminal propeptide of type I procollagen (PICP), amino-terminal propeptide of type III procollagen (PIIINP) and carboxy-terminal telopeptide of type I collagen (ICTP). Furthermore, the ejection fraction (EF) and left ventricular end-diastolic volume maximal changes in the course of 6 months were measured by echocardiography. Results: A significant increase of both PICP and PIIINP on day 4 following MI was detected. Furthermore, PICP and PIIINP level assessed on the 30th day was significantly higher in the PCI unsuccessful group versus successful group. PICP level on day 4 above 110 ug/l and PIIINP level above 4 ug/l was significantly often found in the subgroup of patients with the EF improvement less than 10% or worsening and with significant left ventricular dilatation during 6 months follow-up. Cardiac catheterization itself does not affect collagen metabolism. Conclusion: We concluded that collagen metabolism markers enable to study in vivo the MI healing and to predict left ventricular functional and volume changes. 相似文献
15.
Anna M. Gusakova Tatiana E. Suslova Maria A. Kercheva Irina V. Kologrivova Tamara R. Ryabova Vyacheslav V. Ryabov 《Journal of Medical Biochemistry》2022,41(4):441
BackgroundThe study of laboratory biomarkers that reflect the development of adverse cardiovascular events in the postinfarction period is of current relevance. The aim of the present study was evaluation of oncostatin M (OSM) concentration changes in the early and late stages of myocardial infarction and evaluation of the possibility of its use in prediction of adverse left ventricular (LV) remodeling in patients with myocardial infarction with ST-elevated segment (STEMI).MethodsThe study involved 31 patients with STEMI admitted in the first 24 hours after the onset of MI and 30 patients with chronic coronary artery disease as a control group. Echocardiographic study was performed on day 3 and in 6 months after STEMI. The serum levels of biomarkers were evaluated on the day of hospital admission and 6 months after MI using multiplex immunoassay.ResultsOSM level increased during the first 24 h after the onset of the disease, with the following decrease in 6 months. OSM concentration at admission had correlated with echocardiography parameters and Nt-proBNP, troponin I, CK-MB levels. Our study has demonstrated association of the increased levels of OSM at the early stages of STEMI with development of the adverse LV remodeling in 6 months after the event.ConclusionsElevation of OSM levels in the first 24 h after STEMI is associated with the development of the adverse LV remodeling in the long-term post-infarction period. 相似文献
16.
Wenxiu Liu Jiaxing Sun Yutong Guo Na Liu Xue Ding Xin Zhang Jinyu Chi Ningning Kang Yue Liu Xinhua Yin 《Journal of cellular and molecular medicine》2020,24(22):13440
The calcium‐sensing receptor (CaSR) is involved in the pathophysiology of many cardiovascular diseases, including myocardial infarction (MI) and hypertension. The role of Calhex231, a specific inhibitor of CaSR, in myocardial fibrosis following MI is still unclear. Using Wistar rats, we investigated whether Calhex231 ameliorates myocardial fibrosis through the autophagy‐NLRP3 inflammasome pathway in macrophages post myocardial infarction (MI). The rats were randomly divided into sham, MI and MI + Calhex231 groups. Compared with the sham rats, the MI rats consistently developed severe cardiac function, myocardial fibrosis and infiltration of inflammatory cells including macrophages. Moreover, inflammatory pathway including activation of NLRP3 inflammasome, IL‐1β and autophagy was significantly up‐regulated in myocardial tissue, infiltrated cardiac macrophages and peritoneal macrophages of the MI rats. These impacts were reversed by Calhex231. In vitro, studies revealed that calindol and rapamycin exacerbated MI‐induced autophagy and NLRP3 inflammasome activation in peritoneal macrophages. Calhex231 and 3‐Methyladenine (a specific inhibitor of autophagy) attenuated both autophagy and NLRP3 inflammasome activation; however, the caspase‐1 inhibitor Z‐YVAD‐FMK did not. Our study indicated that Calhex231 improved cardiac function and ameliorated myocardial fibrosis post MI, likely via the inhibition of autophagy‐mediated NLRP3 inflammasome activation; this provides a new therapeutic target for ventricular remodelling‐related cardiovascular diseases. 相似文献
17.
Kang Wang Shuling You Hesheng Hu Xiaolu Li Jie Yin Yugen Shi Lei Qi Pingjiang Li Yuepeng Zhao Suhua Yan 《Journal of cellular and molecular medicine》2022,26(10):2959
Sympathetic activation after myocardial infarction (MI) leads to ventricular arrhythmias (VAs), which can result in sudden cardiac death (SCD). The toll‐like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor‐kappa B (NF‐kB) axis within the hypothalamic paraventricular nucleus (PVN), a cardiac‐neural sympathetic nerve centre, plays an important role in causing VAs. An MI rat model and a PVN‐TLR4 knockdown model were constructed. The levels of protein were detected by Western blotting and immunofluorescence, and localizations were visualized by multiple immunofluorescence staining. Central and peripheral sympathetic activation was visualized by immunohistochemistry for c‐fos protein, renal sympathetic nerve activity (RSNA) measurement, heart rate variability (HRV) analysis and norepinephrine (NE) level detection in serum and myocardial tissue measured by ELISA. The arrhythmia scores were measured by programmed electrical stimulation (PES), and cardiac function was detected by the pressure–volume loop (P‐V loop). The levels of TLR4 and MyD88 and the nuclear translocation of NF‐kB within the PVN were increased after MI, while sympathetic activation and arrhythmia scores were increased and cardiac function was decreased. However, inhibition of TLR4 significantly reversed these conditions. PVN‐mediated sympathetic activation via the TLR4/MyD88/NF‐kB axis ultimately leads to the development of VAs after MI. 相似文献
18.
19.
Acute myocardial infarction (AMI), as a severe consequence of coronary atherosclerotic heart disease, always contributes to the loss of myocardial cells. Mounting evidence shows that annexin protects the myocardium from ischemic injury. In this study, we examine the inhibition of annexin A3 (ANXA3) on AMI through the phosphatidylinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. We selected rats to build an AMI model which was then assigned into different groups. The hemodynamic parameters after transfection were detected by using enzyme-linked immunosorbent assay. The effect of silencing of ANXA3 on inflammatory reaction and the PI3K/Akt signaling pathway was assessed. Rats transfected with ANXA3-short hairpin RNA had alleviated hemodynamics, inflammatory reaction, decreased infarct size, α-smooth muscle actin, Collagen I, and Collagen III as well as an increased vascular endothelial growth factor. Silencing ANAX3 would promote repair and healing of myocardial tissue by activation of the PI3K/Akt signaling pathway. Collectively, our study provides evidence that the downregulation of ANXA3 promotes the repair and healing of myocardial tissues by activating the PI3K/Akt signaling pathway. 相似文献
20.
Xueling Li Jinxuan Zhao Jin Geng Fu Chen Zilun Wei Chen Liu Xinlin Zhang Qiaoling Li Jingmei Zhang Ling Gao Jun Xie Biao Xu 《Journal of cellular and molecular medicine》2019,23(12):8369-8380
Mounting evidence has indicated that long non‐coding RNA maternally expressed gene 3 (lncRNA MEG3) regulates cell apoptosis, and is involved in a variety of diseases. However, its exact role in myocardial infarction (MI) has not been fully elucidated. In the present study, we firstly observed that the expression levels of the lncRNA MEG3 in infarct hearts and hypoxic neonatal mice ventricular myocytes (NMVMs) were up‐regulated by quantitative real‐time PCR (qRT‐PCR). Then, we knocked down lncRNA MEG3 by lentiviral delivery in the myocardial border region following multipoint injection. Following 28 days of MI, the lncRNA MEG3 knockdown mice indicated better cardiac function, and less cardiac remodelling by ultrasonic cardiogram and histological analysis. In addition, we indicated that lncRNA MEG3 knockdown reduced myocyte apoptosis and reactive oxygen species production in MI mice model and hypoxic NMVMs. Furthermore, we revealed that knockdown of lncRNA MEG3 protected against endoplasmic reticulum stress (ERS)‐mediated myocardial apoptosis including the induction of PERK‐eIF2α and caspase 12 pathways. At last, we provided evidence that p53 was identified as a protein target of lncRNA MEG3 to regulate NF‐κB‐ and ERS‐associated apoptosis. Taken collectively, our findings demonstrated that lncRNA MEG3 knockdown exerted cardioprotection by reducing ERS‐mediated apoptosis through targeting p53 post‐MI. 相似文献