首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Contact zones between two evolutionary lineages are often useful for understanding the process of speciation because the observed genetic pattern reflects the history of differentiation. The Eurasian lacertid lizard Zootoca vivipara is a potentially interesting model for studying the role of reproductive mode in the speciation of squamate reptiles because it has both oviparous (Zootoca vivipara carniolica) and viviparous (Zootoca vivipara vivipara) populations that have recently been shown to be genetically distinct. We studied a newly‐discovered syntopic area of these two Zootoca subspecies in the central Italian Alps using genetic markers to investigate the level of introgression between them. Patterns of genetic differentiation in a fragment of the mitochondrial DNA cytb gene and a set of nuclear microsatellites show that the speciation process is complete in this area, with no evidence of recent introgression. Phylogenetic and genotypic divergence suggests that the two subspecies have experienced long independent evolutionary histories, during which genetic and phenotypic differences evolved. The possible roles of biogeography, reproductive mode, and cytogenetic differentiation in this speciation process are discussed. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 566–573.  相似文献   

2.
3.
    
In the mid‐20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of ‘circular overlaps’ or ‘ring species’ as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier, derived taxa within the ring display interactions typical of populations, such as genetic and morphological intergradation, while overlapping taxa at the terminus of the ring behave largely as sympatric, reproductively isolated species. Are ring species extremely rare or are they just difficult to detect? What conditions favour their formation? Modelling studies have attempted to address these knowledge gaps by estimating the biological parameters that result in stable ring species (Martins et al. 2013), and determining the necessary topographic parameters of the barriers encircled (Monahan et al. 2012). However, any generalization is undermined by a major limitation: only a handful of ring species are known to exist in nature. In addition, many of them have been broken into multiple species presumed to be evolving independently, usually obscuring the evolutionary dynamics that generate diversity. A paper in this issue of Molecular Ecology by Fuchs et al. (2015), focused on the entire genealogy of a bulbul (Alophoixus) species complex, offers key insights into the evolutionary processes underlying diversification of this Indo‐Malayan bird. Their findings fulfil most of the criteria that can be expected for ring species (Fig.  1 ): an ancestor has colonized the mainland from Sundaland, expanded along the forested habitat wrapping around Thailand's lowlands, adjacent taxa intergrade around the ring distribution, and terminal taxa overlap at the ring closure. Although it remains unclear whether ring divergence has resulted in restrictive gene flow relative to that observed around the ring, their results suggest that circular overlaps might be more common in nature than currently recognized in the literature. Most importantly, this work shows that the continuum of species formation that Mayr and Dobzhansky praised in circular overlaps is found in biological systems currently described as ‘rings of species’, in addition to the idealized ‘ring species’.  相似文献   

4.
The geographic ranges of rhesus ( Macaca mulatta ) and cynomolgus ( M. fascicularis ) macaques adjoin in Indochina where they appear to hybridize. We used published and newly generated DNA sequences from 19 loci spanning ~20 kb to test whether introgression has occurred between these macaque species. We studied introgression at the level of nuclear DNA and distinguished between incomplete lineage sorting of ancestral polymorphisms or interspecific gene flow. We implemented a divergence population genetics approach by fitting our data to an isolation model implemented in the software IMa. The model that posits no gene flow from the rhesus into the cynomolgus macaque was rejected ( P  = 1.99 × 10−8). Gene flow in this direction was estimated as 2 Nm ~1.2, while gene flow in the reverse direction was nonsignificantly different from zero ( P  = 0.16). The divergence time between species was estimated as ~1.3 million years. Balancing selection, a special case of incomplete sorting, was taken into consideration, as well as potential crossbreeding in captivity. Parameter estimates varied between analyses of subsets of data, although we still rejected isolation models. Geographic sampling of the data, where samples of cynomolgus macaques derived from Indochina were excluded, revealed a lost signature of gene flow, indicating that interspecific gene flow is restricted to mainland Indochina. Our results, in conjunction with those by others, justify future detailed analyses into the genetics of reproductive barriers and reticulate evolution in these two genome-enabled primates. Future studies of the natural hybridization between rhesus and cynomolgus macaques would expand the repertoire of systems available for speciation studies in primates.  相似文献   

5.
Cryptic trysts, genomic mergers, and plant speciation   总被引:4,自引:0,他引:4  
  相似文献   

6.
In recent years many cases of hybridization and introgression became known for chelonians, requiring a better understanding of their speciation mechanisms. Phylogeographic investigations offer basic data for this challenge. We use the sister species Mauremys caspica and M. rivulata, the most abundant terrapins in the Near and Middle East and South-east Europe, as model. Their phylogeographies provide evidence that speciation of chelonians fits the allopatric speciation model, with both species being in the parapatric phase of speciation, and that intrinsic isolation mechanisms are developed during speciation. Hybridization between M. caspica and M. rivulata is very rare, suggesting that the increasing numbers of hybrids in other species are caused by human impact on environment (breakdown of ecological isolation). Genetic differentiation within M. caspica and M. rivulata resembles the paradigm of southern genetic richness and northern purity of European biota. However, in west Asia this pattern is likely to reflect dispersal and vicariance events older than the Holocene. For M. caspica three distinct Pleistocene refuges are postulated (Central Anatolia, south coast of Caspian Sea, Gulf of Persia). Morphologically defined subspecies within M. caspica are not supported by genetic data. This is one of the few studies available about the phylogeography of west and central Asian species.  相似文献   

7.
8.
    
As a result of intensive exploitation, disturbed forests now dominate large areas of lowland tropical rainforest in South‐East Asia. The genus Macaranga comprises some of the most important pioneer tree species of the region, among them M. beccariana and M. hypoleuca, two closely related obligate ant‐plants pollinated by thrips. We used nuclear and plastid DNA markers to address questions of genetic diversity and population structure. Twelve plastid haplotypes were detected among 281 samples, three of which were shared between the two study species. Hybrids between the two species appear to be rare. Overall, genetic diversity in both species was moderate to high, with low levels of population differentiation, consistent with other tropical pioneer trees. Genetic structure was generally more pronounced in plastid than in nuclear data, indicating that gene flow via pollen may be more efficient than via seeds. Thrips apparently also serve as efficient pollinators over long distances, perhaps through a combination of passive dispersal by wind and active search for inflorescences in the target area. Our results indicate that M. beccariana and M. hypoleuca populations from recently disturbed habitats do not yet suffer from reduced genetic diversity or increased inbreeding. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 606–621.  相似文献   

9.
Models that posit speciation in the face of gene flow are replacing classical views that hybridization is rare between animal species. We use a multilocus approach to examine the history of hybridization and gene flow between two species of chipmunks ( Tamias ruficaudus and T. amoenus ). Previous studies have shown that these species occupy different ecological niches and have distinct genital bone morphologies, yet appear to be incompletely isolated reproductively in multiple areas of sympatry. We compared data from four sequenced nuclear loci and from seven microsatellite loci to published cytochrome b sequences. Interspecific gene flow was primarily restricted to introgression of the T. ruficaudus mitochondrial genome into a sympatric subspecies of T. amoenus , T. a. canicaudus , with the four sequenced nuclear loci showing little to no interspecific allele sharing. Microsatellite data were consistent with high levels of differentiation between the species and also showed no current gene flow between broadly sympatric populations of T. a. canicaudus and T. ruficaudus . Coalescent analyses date the mtDNA introgression event from the mid-Pleistocene to late Pliocene. Overall, these data indicate that introgression has had a minimal impact on the nuclear genomes of T. amoenus and T. ruficaudus despite multiple independent hybridization events. Our findings challenge long-standing assumptions on patterns of reproductive isolation in chipmunks and suggest that there may be other examples of hybridization among the 23 species of Tamias that occur in western North America.  相似文献   

10.
Recently diverged populations often exhibit incomplete reproductive isolation, with a low level of gene flow continuing between populations. Previous studies have shown that, even under a low level of gene flow, genetic divergence between populations can proceed at the loci governing local adaptation and reproductive isolation but not at other neutral loci. A leaf‐mining moth, Acrocercops transecta, consists of Juglans‐ and Lyonia‐associated host races. The two host races differ in host preferences of ovipositing females and in larval adaptation to host plants but mate readily in the laboratory, producing fertile hybrids. The Juglans and Lyonia races are often sympatric in the wild, implying that gene introgression could occur in nature between the two host races. We tested this hypothesis by combining phylogenetic analyses with coalescent simulations, focusing on mitochondrial genes (COI and ND5) and the nuclear Tpi, Per and Ldh genes located on the Z‐chromosome. The mitochondrial genes clearly distinguished the Lyonia race from the Juglnas race, whereas the Tpi, Per and Ldh genealogies did not reflect the two host races. Coalescent simulations indicated gene flow at the three Z‐linked genes in both directions, whereas there was no introgression in the mitochondrial genes. The lack of introgression in mitochondrial genes suggests that female host preference is the primary force leading to the bifurcation of maternally inherited loci. Thus, the results show that a low level of gene flow coupled with the inflexible female host preference differentiates histories of divergence between maternally and biparentally inherited genes in this host race system.  相似文献   

11.
The formal processes of alpha-taxonomy ensure that species have uniquenames and can be identified. No similar process is mandatory forinfraspecific variation, so the species is a uniquely importantpractical term. At present, there is little agreement of the definitionof a species. In the last 30 years, numerous concepts have beenproposed. The nature of fish species is reviewed. Clonal inheritance ofnuclear genes occurs in several lineages. Hybridization is frequent,often leading to introgression, which may lead to extinction of species.Species may have hybrid origins. There is good evidence for parallelspeciation in similar habitats. There are clearly exceptions to thecladistic assumption of dichotomous branching during speciation. Siblingspecies may exist with no discernible niche differentiation.Basic assumptions are violated for the recognition, phylogenetic,ecological and some formulations of the evolutionary species concepts.The most satisfactory definitions are two of the earliest proposed inthe light of evolutionary theory. The Darwinian view is that species arerecognizable entities which are not qualitatively distinct fromvarieties. A restatement of this concept in genetic terms provides ameans of dealing with all forms of species known in present-day fishes.This modified Darwinian concept is operated through the application offuzzy logic rather than rigid definition. This involves a search fordiscontinuities between species, rather than an a priori definition ofhow boundaries are to be determined. A subset of Darwinian species areMayrian or biological species, which are characterized by theirdemonstrable reproductive isolation from other species. The status of apopulation as a Mayrian species is a testable hypothesis. Moleculartechniques allow this hypothesis to be tested more easily thanpreviously, at least when dealing with sympatric populations.  相似文献   

12.
    
Whether chromosomal rearrangements promote speciation by providing barriers to gene exchange between populations is one of the long-standing debates in evolutionary biology. This question can be addressed by studying patterns of gene flow and selection in hybrid zones between chromosomally diverse taxa. Here we present results of the first study of the genetic structure of a hybrid zone between chromosomal races of morabine grasshoppers Vandiemenella viatica , P24(XY) and viatica 17, on Kangaroo Island, Australia. Chromosomal and 11 nuclear markers revealed a narrow hybrid zone with strong linkage disequilibrium and heterozygote deficits, most likely maintained by a balance between dispersal and selection. Widths and positions of clines for these markers are concordant and coincident, suggesting that selection is unlikely to be concentrated on a few chromosomes. In contrast, a mitochondrial marker showed a significantly wider cline with centre offset toward the P24(XY) side. We argue that the discordance between the mitochondrial and nuclear/chromosomal clines and overall asymmetry of the clines suggest a secondary origin of the contact zone and potential movement of the zone after contact. Genome-wide scans using many genetic markers and chromosomal mapping of these markers are needed to investigate whether chromosomal differences directly reduce gene flow after secondary contact.  相似文献   

13.
Hybrids between species provide information about the evolutionary processes involved in divergence. In addition to creating hybrids in the laboratory, biologists can take advantage of natural hybrid zones to understand the factors that shape gene flow between divergent lineages. In the early stages of speciation, most regions of the genome continue to flow freely between populations. Alternatively, the subset of the genome that confers reproductive barriers between nascent species is expected to reject introgression. Now enabled by advances in genomics, this perspective is motivating detailed comparisons of gene flow across genomic regions in hybrid zones. Here, I review methods for measuring and interpreting introgression at multiple loci in hybrid zones, focusing on the problem of identifying loci that contribute to reproductive isolation. Emerging patterns from multi-locus studies of hybrid zones are highlighted, including remarkable variance in introgression across the genome. Although existing methods have been useful, there is scope for development of new analytical approaches that better connect differential patterns of gene flow in hybrid zones with current knowledge of speciation mechanisms. I outline future prospects for differential introgression studies on a genomic scale.  相似文献   

14.
    
Sam Yeaman 《Molecular ecology》2013,22(12):3195-3197
  相似文献   

15.
    
Although hybridization plays a large role in speciation, some unknown fraction of hybrid individuals never reproduces, instead remaining as genetic dead-ends. We investigated a morphologically distinct and culturally important Chinese walnut, Juglans hopeiensis, suspected to have arisen from hybridization of Persian walnut (J. regia) with Asian butternuts (J. cathayensis, J. mandshurica, and hybrids between J. cathayensis and J. mandshurica). Based on 151 whole-genome sequences of the relevant taxa, we discovered that all J. hopeiensis individuals are first-generation hybrids, with the time for the onset of gene flow estimated as 370,000 years, implying both strong postzygotic barriers and the presence of J. regia in China by that time. Six inversion regions enriched for genes associated with pollen germination and pollen tube growth may be involved in the postzygotic barriers that prevent sexual reproduction in the hybrids. Despite its long-recurrent origination and distinct traits, J. hopeiensis does not appear on the way to speciation.  相似文献   

16.
    
The salamander Ensatina eschscholtzii is an example of a ring species in which extant intermediate stages of terminal forms have a nearly continuous range, offering replicated interactions at several stages of divergence. We employ a greatly expanded allozyme database and individual-based analyses to separate the effects of divergence time and gene flow to evaluate how gradual divergence of populations around the ring contributes to the development of reproductive isolation. Despite the high degree of genetic ( D ≤ 0.39) and ecomorphological divergence observed in secondary contacts around the ring, reproductive isolation or rare hybridization is observed only at the terminus of the ring. Instead, in the secondary contacts sampled around the ring, hybrids are common and reproductively successful, enabling genetic leakage between parental genomes and the potential for genetic merger. Nevertheless, genetic admixture is geographically broad (<100 km) only in contacts between ecomorphologically similar populations (within subspecies). When divergence is accompanied by alternative patterns of adaptive divergence (between subspecies), zones of intergradation are narrower and affect populations only locally (>8 km). Diversification and consequent genetic interactions in Ensatina reveal a continuum between populations, ecological races, and species, where polytypic traits and high genetic differentiation are maintained without reproductive isolation.  相似文献   

17.
18.
Explosive speciation in ancient lakes has fascinated biologists for centuries and has inspired classical work on the tempo and modes of speciation. Considerable attention has been directed towards the extrinsic forces of speciation—the geological, geographical and ecological peculiarities of ancient lakes. Recently, there has been a resurgence of interest in the intrinsic nature of these radiations, the biological characteristics conducive to speciation. While new species are thought to arise mainly by the gradual enhancement of reproductive isolation among geographically isolated populations, ancient lakes provide little evidence for a predominant role of geography in speciation. Recent phylogenetic work provides strong evidence that multiple colonization waves were followed by parallel intralacustrine radiations that proceeded at relatively rapid rates despite long‐term gene flow through hybridization and introgression. Several studies suggest that hybridization itself might act as a key evolutionary mechanism by triggering major genomic reorganization/revolution and enabling the colonization of new ecological niches in ancient lakes. These studies propose that hybridization is not only of little impediment to diversification but could act as an important force in facilitating habitat transitions, promoting postcolonization adaptations and accelerating diversification. Emerging ecological genomic approaches are beginning to shed light on the long‐standing evolutionary dilemma of speciation in the face of gene flow. We propose an integrative programme for future studies on speciation in ancient lakes.  相似文献   

19.
20.
    
Oceanic islands have long been called natural laboratories for studying evolution because they are geologically young, isolated, dynamic areas with diverse habitats over small spatial scales. Volcanic substrates of different ages permit the study of different stages of divergence and speciation within plant lineages. In addition to divergence, the dynamic island setting is conducive to hybridization. Discussion will focus on the potential of systematic/ecological studies, in combination with genomic data from high throughput sequencing and an ever‐increasing array of analytical techniques, for studying evolution in island plants. These studies may include: generation of highly resolved phylogenies to clarify the biogeography of speciation and whether divergence has occurred with or without gene flow; identification of the barriers to gene flow (extrinsic vs. intrinsic) of importance during divergence; documentation of historical and current hybridization events within island lineages; and elucidation of the genomic composition and ecology of hybrid populations in order to infer the evolutionary consequences of hybridization, such as the origin of stabilized homoploid hybrid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号