首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The presence of coliform bacteria, faecal coliforms, Escherichia coli, diarrhoeagenic E. coli pathotypes (DEP) and Salmonella were determined in ready‐to‐eat cooked vegetable salads (RECS) from restaurants in Pachuca city, Mexico. The RECS were purchased from three types of restaurants: national chain restaurants (A), local restaurants (B) and small restaurants (C). Two restaurants for each A and B, and three for C, were included. Forty RECS samples were purchased at each A and B restaurant and 20 at each C restaurant. Of the overall total of 220 analysed samples, 100, 98·2, 72·3, 4·1 and 4·1% had coliform bacteria, faecal coliforms, E. coli, DEP and Salmonella, respectively. Identified DEP included enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and Shiga toxin‐producing E. coli (STEC). The EPEC, ETEC and STEC were isolated each from 1·4% of samples. No E. coli O157:H7 were detected in any STEC‐positive samples. The analysis of Kruskal–Wallis anova and median test of microbiological data showed that the microbiological quality of RECS did not differ between the different restaurants (P > 0·05).

Significance and Impact of the Study

This is the first report regarding microbiological quality and Salmonella, enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and Shiga toxin‐producing E. coli (STEC) isolation from ready‐to‐eat cooked vegetable salads from Mexican restaurants. Ready‐to‐eat cooked vegetable salads could be an important factor contributing to the endemicity of EPEC, ETEC and STEC, and Salmonella caused gastroenteritis in Mexico.  相似文献   

3.
4.
5.
Aims: To isolate, characterize and select phages as potential biocontrol agents of enterohemorrhagic and Shiga toxin‐producing Escherichia coli (EHEC and STEC) in cattle. Methods and Results: Sixteen STEC and EHEC coliphages were isolated from bovine minced meat and stool samples and characterized with respect to their host range against STEC, EHEC and other Gram‐negative pathogens; their morphology by electron microscopy; the presence of the stx1, stx2 and cI genes by means of PCR; RAPD and rep‐PCR profiles; plaque formation; and acid resistance. Six isolates belonged to the Myoviridae and 10 to the Podoviridae families. The phages negative for stx and cI that formed large, well‐defined plaques were all isolated using EHEC O157:H7 as host. Among them, only CA911 was a myophage and, together with CA933P, had the broadest host range for STEC and EHEC; the latter phage also infected Shigella and Pseudomonas. Isolates CA911, MFA933P and MFA45D differed in particle morphology and amplification patterns by RAPD and rep‐PCR and showed the highest acidity tolerance. Conclusions: Myophage CA911 and podophages CA933P, MFA933P and MFA45D were chosen as the best candidates for biocontrol of STEC and EHEC in cattle. Significance and Impact of the Study: This work employs steps for a rational selection and characterization of bacteriophages as therapeutic agents. This report constitutes the first documentation of STEC and EHEC phages isolated in Argentina and proposes for the first time the use of rep‐PCR as a complement of RAPD on DNA fingerprinting of phages.  相似文献   

6.
7.
Hybridization between distantly related organisms can facilitate rapid adaptation to novel environments, but is potentially constrained by epistatic fitness interactions among cell components. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other by around 15% at the nucleotide level, corresponding to an average of nearly 40 amino acids per protein‐coding gene. Using whole genome sequencing, we show that a single C. coli lineage, which has successfully colonized an agricultural niche, has been progressively accumulating C. jejuni DNA. Members of this lineage belong to two groups, the ST‐828 and ST‐1150 clonal complexes. The ST‐1150 complex is less frequently isolated and has undergone a substantially greater amount of introgression leading to replacement of up to 23% of the C. coli core genome as well as import of novel DNA. By contrast, the more commonly isolated ST‐828 complex bacteria have 10–11% introgressed DNA, and C. jejuni and nonagricultural C. coli lineages each have <2%. Thus, the C. coli that colonize agriculture, and consequently cause most human disease, have hybrid origin, but this cross‐species exchange has so far not had a substantial impact on the gene pools of either C. jejuni or nonagricultural C. coli. These findings also indicate remarkable interchangeability of basic cellular machinery after a prolonged period of independent evolution.  相似文献   

8.
Escherichia coli biofilm consists of a bacterial colony embedded in a matrix of extracellular polymeric substances (EPS) which protects the microbes from adverse environmental conditions and results in infection. Besides being the major causative agent for recurrent urinary tract infections, E. coli biofilm is also responsible for indwelling medical device‐related infectivity. The cell‐to‐cell communication within the biofilm occurs due to quorum sensors that can modulate the key biochemical players enabling the bacteria to proliferate and intensify the resultant infections. The diversity in structural components of biofilm gets compounded due to the development of antibiotic resistance, hampering its eradication. Conventionally used antimicrobial agents have a restricted range of cellular targets and limited efficacy on biofilms. This emphasizes the need to explore the alternate therapeuticals like anti‐adhesion compounds, phytochemicals, nanomaterials for effective drug delivery to restrict the growth of biofilm. The current review focuses on various aspects of E. coli biofilm development and the possible therapeutic approaches for prevention and treatment of biofilm‐related infections.  相似文献   

9.
10.
11.
12.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

13.
14.
15.
16.
The aim of this study was to report the antimicrobial resistance, the molecular mechanisms associated and the detection of virulence determinants within faecal Enterococcus spp. and Escherichia coli isolates of Iberian wolf. Enterococci (= 227) and E. coli (= 195) isolates were obtained from faecal samples of Iberian wolf (Canis lupus signatus). High rates of resistance were detected for tetracycline and erythromycin among the enterococci isolates, and most of resistant isolates harboured the tet(M) and/or tet(L) and erm(B) genes, respectively. The blaTEM, tet(A) and/or tet(B), and aadA or strAstrB genes were detected among most ampicillin‐, tetracycline‐ or streptomycin‐resistant E. coli isolates, respectively. E. coli isolates were ascribed to phylogroups A (= 56), B1 (91), B2 (13) and D (35). The occurrence of resistant enterococci and E. coli isolates in the faecal flora of Iberian wolf, including the presence of resistant genes in integrons, and virulence determinants was showed in this study. Iberian wolf might act as reservoir of certain resistance genes that could be spread throughout the environment.

Significance and Impact of the Study

This study shows antimicrobial resistance in commensal bacteria from the free‐range, Portuguese, Iberian wolf population. The results indicate that the Iberian wolf could contribute to the spread of resistant bacteria throughout the environment. Additionally, in case of infection, an increased risk of therapeutic failure due to the presence of multiresistant bacteria may represent a health problem for this endangered species. Future studies must be performed to analyse the possible contamination of these animals through the environment and/or the food chain.  相似文献   

17.
18.
19.
Aims: To feno‐genotypically characterize the Shiga toxin‐producing Escherichia coli (STEC) population in Argentinean dairy cows. Methods and Results: From 540 STEC positive samples, 170 isolates were analyzed by multiplex PCR and serotyping. Of these, 11% carried stx1, 52%stx2 and 37%stx1/stx2. The ehxA, saa and eae were detected in 77%, 66% and 3%, respectively. Thirty‐five per cent of strains harboured the profile stx1, stx2, saa, ehxA and 29%stx2, saa, ehxA. One hundred and fifty‐six strains were associated with 29 different O serogroups, and 19 H antigens were distributed among 157 strains. STEC O113:H21, O130:H11 and O178:H19 were the most frequently found serotypes. The STEC O157:H7 were detected in low rate and corresponded to the stx2+, eae+, ehxA+ virulence pattern. Conclusions: We detected a diversity of STEC strains in dairy cattle from Argentina, most of them carrying genes linked to human disease. Significance and Impact of the study: The non‐O157 STEC serotypes described in this study are associated worldwide with disease in humans and represent a risk for the public health. For this, any microbiological control in dairy farms should be targeted not only to the search of O157:H7 serotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号