首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.  相似文献   

2.
The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.  相似文献   

3.
To understand the variation in genomic composition and its effect on codon usage, we performed the comparative analysis of codon usage and nucleotide usage in the genes of three dicots, Glycine max, Arabidopsis thaliana and Medicago truncatula. The dicot genes were found to be A/T rich and have predominantly A-ending and/or T-ending codons. GC3s directly mimic the usage pattern of global GC content. Relative synonymous codon usage analysis suggests that the high usage frequency of A/T over G/C mononucleotide containing codons in AT-rich dicot genome is due to compositional constraint as a factor of codon usage bias. Odds ratio analysis identified the dinucleotides TpG, TpC, GpA, CpA and CpT as over-represented, where, CpG and TpA as under-represented dinucleotides. The results of (NcExp?NcObs)/NcExp plot suggests that selection pressure other than mutation played a significant role in influencing the pattern of codon usage in these dicots. PR2 analysis revealed the significant role of selection pressure on codon usage. Analysis of varience on codon usage at start and stop site showed variation in codon selection in these sites. This study provides evidence that the dicot genes were subjected to compositional selection pressure.  相似文献   

4.
Hepatitis C virus infection (HCV) alarmingly increases worldwide; it causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma, so there is urgent need of developing effective and sufficient quantity of vaccine. HCV envelope protein E2 is the main target for developing as a vaccine candidate. Presently recombinant proteins can successfully be used as a vaccine for many diseases. This concern, it is challenging to produce sufficient quantities of many recombinant proteins from their expression hosts. One of the main factors affecting the success of expression of foreign genes in heterologous hosts is the divergence of codon usage of the target gene from that used in the expression system. In this study, we optimized the various genotypes of HCV envelope protein E2 gene according to the codon usage of Pichia pastoris and predicted the expression level. Synonymous codon usage of E2 adapted to that used by P. pastoris was estimated using the relative synonymous codon usage value (RSCU), codon adaptation index (CAI) and effective number of codon (ENC). The CAI of optimized HCV E2 sequences was enhanced from 0.638 to 0.833 and %GC was decreased from 56.05 to 44.05; this was significantly (p < 0.01) different from the native sequences. Codon with RSCU value less than one was replaced with most preferred synonymous codons. The ENC values of optimized HCV E2 sequences varied from 47.00 to 47.50, with a mean value of 47.15 and an SD of 0.14. Our study suggested that, from the measured values of predicted expression level, the codon optimized HCV E2 protein could be produced in sufficient quantity in the expression host; knowledge of the codon usage patterns of E2 of various genotypes facilitate the production of a promising unique vaccine candidate for HCV.  相似文献   

5.
Plant carotenoid cleavage dioxygenase (CCD) catalyses the formation of industrially important apocarotenoids. Here, we applied codon-based classification for 72 CCD genes from 35 plant species using hierarchical clustering analysis. The codon adaptation index (CAI) and relative codon bias (RCB) were utilized to estimate the level of gene expression. The codon-based cluster tree result shows neatly clustered subclass of CCD genes except BoCCD1 gene of Bixa orellana. Correlation analysis of CAI values with RCB indicates an overall low-level expression of CCD across different species. Similarly, the closeness in the codon cluster with same CAI values was not reflected in 3-D structural report of selected CCD genes. These finding not only enhances our insights into the classification of CCD gene across the species but also identifies the critical factors responsible for this variation, which could aid in prediction of gene expression and function for newly reported CCD genes.  相似文献   

6.
7.

Key message

An NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2.

Abstract

Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.
  相似文献   

8.
We aimed to study MLH1 and MGMT methylation status in Helicobacter pylori-associated chronic gastritis in Egyptian patients with and without gastric cancer. 39 patients were included in our study. They were divided into 2 groups; patients without (group I) and with gastric adenocarcinoma (group II). Patients were subjected to clinical examination, abdominal ultrasound and upper endoscopy for gastric biopsy. Biopsies were subjected to urease test, histological examination, and DNA purification. H. pylori, Braf, Kras, MLH1 and MGMT methylation were assessed by quantitative PCR. DNA sequencing was performed to assess Braf and Kras genes mutation. qPCR of H. pylori was significantly higher in patients with adenocarcinoma (group II) than those without adenocarcinoma (group I); with a p < 0.001 as well as in patients with age above 50 years with a p value = 0.008. By applying logistic regression analysis it was reported that the H. pylori qPCR is a significant predictor to the adenocarcinoma with OR = 1.025 (95 % CI: 1. 002–1.048), with sensitivity of 90 % and specificity of 100 %. Adenocarcinoma patients had a significantly higher mean age and levels of H. Pylori, Braf, K-ras, methylated MGMT and methylated MLH1 than those of gastritis patients. DNA sequence analysis of Braf (codon 12) and Kras (codon 600) had genes mutation in gastric adenocarcinoma versus chronic gastritis. Conclusion: H. pylori may cause epigenetic changes predisposing the patients to cancer stomach. Estimation of H. pylori by qPCR can be a good predictor to adenocarcinoma. Braf and Kras genes mutation were reveled in gastritis and adenocarcinoma patients.  相似文献   

9.

Background

Species of Paris Sect. Marmorata are valuable medicinal plants to synthesize steroidal saponins with effective pharmacological therapy. However, the wild resources of the species are threatened by plundering exploitation before the molecular genetics studies uncover the genomes and evolutionary significance. Thus, the availability of complete chloroplast genome sequences of Sect. Marmorata is necessary and crucial to the understanding the plastome evolution of this section and facilitating future population genetics studies. Here, we determined chloroplast genomes of Sect. Marmorata, and conducted the whole chloroplast genome comparison.

Results

This study presented detailed sequences and structural variations of chloroplast genomes of Sect. Marmorata. Over 40 large repeats and approximately 130 simple sequence repeats as well as a group of genomic hotspots were detected. Inverted repeat contraction of this section was inferred via comparing the chloroplast genomes with the one of P. verticillata. Additionally, almost all the plastid protein coding genes were found to prefer ending with A/U. Mutation bias and selection pressure predominately shaped the codon bias of most genes. And most of the genes underwent purifying selection, whereas photosynthetic genes experienced a relatively relaxed purifying selection.

Conclusions

Repeat sequences and hotspot regions can be scanned to detect the intraspecific and interspecific variability, and selected to infer the phylogenetic relationships of Sect. Marmorata and other species in subgenus Daiswa. Mutation and natural selection were the main forces to drive the codon bias pattern of most plastid protein coding genes. Therefore, this study enhances the understanding about evolution of Sect. Marmorata from the chloroplast genome, and provide genomic insights into genetic analyses of Sect. Marmorata.
  相似文献   

10.

Objectives

To evaluate different codon optimization parameters on the Saccharomyces cerevisiae-derived mating factor α prepro-leader sequence (MFLS) to improve Candida antarctica lipase B (CAL-B) secretory production in Pichia pastoris.

Results

Codon optimization based on the individual codon usage (ICU) and codon context (CC) design parameters enhanced secretory production of CAL-B to 7 U/ml and 12 U/ml, respectively. Only 3 U/ml was obtained with the wild type sequence while the sequence optimized using both ICU and CC objectives showed intermediate performance of 10 U/ml. These results clearly show that CC is the most relevant parameter for the codon optimization of MFLS in P. pastoris, and there is no synergistic effect achieved by considering both ICU and CC together.

Conclusion

The CC optimized MFLS increased secretory protein production of CAL-B in P. pastoris by fourfold.
  相似文献   

11.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

12.

Key message

A novel powdery mildew-resistance gene, designated Pm58, was introgressed directly from Aegilops tauschii to hexaploid wheat, mapped to chromosome 2DS, and confirmed to be effective under field conditions. Selectable KASP? markers were developed for MAS.

Abstract

Powdery mildew caused by Blumeria graminis (DC.) f. sp. tritici (Bgt) remains a significant threat to wheat (Triticum aestivum L.) production. The rapid breakdown of race-specific resistance to Bgt reinforces the need to identify novel sources of resistance. The d-genome species, Aegilops tauschii, is an excellent source of disease resistance that is transferrable to T. aestivum. The powdery mildew-resistant Ae. tauschii accession TA1662 (2n?=?2x?=?DD) was crossed directly with the susceptible hard white wheat line KS05HW14 (2n?=?6x?=?AABBDD) followed by backcrossing to develop a population of 96 BC2F4 introgression lines (ILs). Genotyping-by-sequencing was used to develop a genome-wide genetic map that was anchored to the Ae. tauschii reference genome. A detached-leaf Bgt assay was used to screen BC2F4:6 ILs, and resistance was found to segregate as a single locus (χ?=?2.0, P value?=?0.157). The resistance gene, referred to as Pm58, mapped to chromosome 2DS. Pm58 was evaluated under field conditions in replicated trials in 2015 and 2016. In both years, a single QTL spanning the Pm58 locus was identified that reduced powdery mildew severity and explained 21% of field variation (P value?<?0.01). KASP? assays were developed from closely linked GBS-SNP markers, a refined genetic map was developed, and four markers that cosegregate with Pm58 were identified. This novel source of powdery mildew-resistance and closely linked genetic markers will support efforts to develop wheat varieties with powdery mildew resistance.
  相似文献   

13.
The U small nuclear RNA (U snRNA) genes comprise a multigene family and are required for splicing of pre-mRNA. In this paper, we aimed to study the chromosomal location of the U2 snRNA gene in Megaleporinus, Leporinus and Schizodon species, which constitute interesting models for the study of repetitive DNA and genomic evolution in fish once the group comprises species with and without heteromorphic sex chromosomes. The all six species showed 2n?=?54 chromosomes: Megaleporinus elongatus, Megaleporinus macrocephalus, Leporinus striatus, Leporinus friderici, Schizodon borelli and Schizodon isognathus. The U2 snDNA clusters were evident in only one medium-sized submetracentric pair in all analyzed species and this may represent a condition shared by Anostomidae family.  相似文献   

14.
Here we evaluate the origins and relationships of Mexican and Central American Diplazium hybrids derived from crosses involving either D. plantaginifolium or D. ternatum. Based on study of live plants and herbarium specimens, we distinguish D. ×verapax from the similar D. riedelianum and present evidence that the former is a sterile hybrid derived from a cross between D. plantaginifolium and D. werckleanum. We also describe new hybrids, D. ×torresianum and D. ×subternatum from Mexico and northern Central America. Both involve D. ternatum as one parent. Diplazium. cristatum is the other putative parent of D. ×torresianum, and D. plantaginifolium is the second parent of D. ×subternatum. We also designate lectotypes for D. cordovense and D. dissimile.  相似文献   

15.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

16.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

17.
Eukaryotic cells possess a special mechanism for the degradation of mRNAs containing premature termination codons (PTCs), referred to as NMD (nonsense-mediated mRNA decay). The strength of this pathway depends on the recognition of the PTCs by translational machinery and the interaction of translation termination factors eRF1 and eRF3 with Upf1, Upf2 and Upf3 proteins in Sachromyces cerevisiae yeast. Previously, we have shown that the decrease of eRF1 protein amounts in sup45 nonsense mutants leads to the impairment of NMD. Here we show that the deletion of UPF1 or UPF2 genes leads to an increase in the viability of sup45 mutants, while the effect of UPF3 gene deletion is allele-specific. Two-hybrid data have shown that amino acid residues 1–555 of Upf1 protein interact with eRF1. Any UPF gene deletion leads to allosupression of the adel1-14 mutation without a change in eRF1 content. The Upf1 depletion does not influence the synthetic lethality of sup45 mutations and the [PSI +] prion. It is possible that the absence of Upf1 (or its activator Upf2) leads to a more effective formation of the translation termination complex and consequently to the increased viability of the cells containing mutant termination factors.  相似文献   

18.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

19.
20.

Background

Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer’s disease (AD).

Methods

We tested the association of these variants with five neurodegenerative diseases in Caucasian case-control cohorts: 2742 AD, 231 progressive supranuclear palsy (PSP), 838 Parkinson’s disease (PD), 306 dementia with Lewy bodies (DLB) and 150 multiple system atrophy (MSA) vs. 3351 controls; and in an African-American AD case-control cohort (181 AD, 331 controls). 1479 AD and 1491 controls were non-overlapping with a prior report.

Results

Using Fisher’s exact test, there was significant association of both ABI3_rs616338-T (OR?=?1.41, p?=?0.044) and PLCG2_rs72824905-G (OR?=?0.56, p?=?0.008) with AD. These OR estimates were maintained in the non-overlapping replication AD-control analysis, albeit at reduced significance (ABI3_rs616338-T OR?=?1.44, p?=?0.12; PLCG2_rs72824905-G OR?=?0.66, p?=?0.19). None of the other cohorts showed significant associations that were concordant with those for AD, although the DLB cohort had suggestive findings (Fisher’s test: ABI3_rs616338-T OR?=?1.79, p?=?0.097; PLCG2_rs72824905-G OR?=?0.32, p?=?0.124). PLCG2_rs72824905-G showed suggestive association with pathologically-confirmed MSA (OR?=?2.39, p?=?0.050) and PSP (OR?=?1.97, p?=?0.061), although in the opposite direction of that for AD. We assessed RNA sequencing data from 238 temporal cortex (TCX) and 224 cerebellum (CER) samples from AD, PSP and control patients and identified co-expression networks, enriched in microglial genes and immune response GO terms, and which harbor PLCG2 and/or ABI3. These networks had higher expression in AD, but not in PSP TCX, compared to controls. This expression association did not survive adjustment for brain cell type population changes.

Conclusions

We validated the associations previously reported with ABI3_rs616338-T and PLCG2_rs72824905-G in a Caucasian AD case-control cohort, and observed a similar direction of effect in DLB. Conversely, PLCG2_rs72824905-G showed suggestive associations with PSP and MSA in the opposite direction. We identified microglial gene-enriched co-expression networks with significantly higher levels in AD TCX, but not in PSP, a primary tauopathy. This co-expression network association appears to be driven by microglial cell population changes in a brain region affected by AD pathology. Although these findings require replication in larger cohorts, they suggest distinct effects of the microglial genes, ABI3 and PLCG2 in neurodegenerative diseases that harbor significant vs. low/no amyloid ß pathology.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号