首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. Mitochondria, inner and outer mitochondrial membranes and microsomes were isolated and purified from pig heart. Their lipid composition and protein components were studied. 2. The fatty acid distribution in the main phospholipids seemed specific rather of a given phospholipid and not of one type of membrane. 3. Inner mitochondrial membranes were characterized by a high content in cardiolipin and a very low level of triglycerides together with a high degree of unsaturation and C18 acids. Gel electrophoresis revealed 13 different polypeptide subunits of which 5 were major ranging in molecular weights from 10000 to 215000. 4. In outer mitochondrial membranes, total lipid, phosphatidylcholine, phosphatidylinositol, plasmologen and triglyceride contents were much higher than in inner membranes. Fatty acids of phospholipids were mostly saturated and the polypeptide pattern showed 12 components, of which 4 were major of mol. wt 75000, 60000, 20000 and below 10000. 5. Compared to outer membrane, microsomes exhibited a much higher cholesterol content and markedly different protein profiles. They contained significant amounts of cardiolipin and phosphatidylserine, this latter phospholipid being exclusively located in microsomes. However odd similarities were observed in some lipid components of microsomes and inner mitochondrial membranes, but fatty acids were more saturated in microsomes and electrophoretic profiles of protein components appeared very different and revealed components of high mol. wt.  相似文献   

2.
3.
Phospholipid peroxidation of isolated rat liver inner mitochondrial membranes induced by either ascorbate or cysteine was accompanied by a release of flavins and coenzyme Q. A straight correlation between this release and the alteration of molecular species of phosphatidylcholine and phosphatidylethanolamine containing one saturated and one unsaturated fatty acid has been found. Peroxidation induced on molecular species of phosphatidylcholine and phosphatidylethanolamine containing only unsaturated fatty acids were accompanied by losses in enzyme activities of NADH-cytochrome c reductase and succinate cytochrome c reductase.  相似文献   

4.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both promitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

5.
Cholecalciferol administration to vitamin D-deficient chicks produces, 24 h after treatment, a specific increase of the phosphatidylcholine content in the intestinal mitochondrial inner membrane plus matrix fraction without changes in its proportion in the outer membrane. The ratio of unsaturated/saturated fatty acids in the outer membrane phosphatidylcholine was increased by that treatment. The inner membrane plus matrix presents a decrease of 16:1 in phosphatidylethanolamine and 18:0 in the phosphatidylcholine fraction. Cardiolipin shows the largest change in the ratio of unsaturated/saturated fatty acids predominantly by an increase in the linoleic acid. The present data suggest that phosphatidylcholine and fatty acids modifications in both mitochondrial subfractions caused by vitamin D3 might have some role in the intestinal mitochondrial Ca transport.  相似文献   

6.
The biosynthesis of [3H]polyglycerophosphatides ([3H]phosphatidylglycerophosphate and [3H]phosphatidylglycerol) in mitochondrial and submitochondrial (outer and inner) membranes isolated from guinea pig liver was examined. Experimental results have established that the amount of biosynthesized [3H]polyglycerophosphatides and the relative amounts of biosynthesized [3H]phosphatidylglycerol and [3H]phosphatidylglycerolphosphate can be influenced by varying the composition of fatty acids in CDP-diglycerides and by altering the incubation time of the mixture containing CDP-diglycerides (obligatory precursor), sn-[2-3H]glycerol-3-phosphate and mitochondria or submitochondrial membranes. The changes thus obtained in respect to the amount and composition of biosynthesized [3H]polyglycerophosphatides are different in mitochondria and submitochondrial membranes. The highest amount of biosynthesized [3H]polyglycerophosphatides was obtained with CDP-didecanoin and inner mitochondrial membranes. The greatest accumulation of [3H]phosphatidylglycerol with CDP-didecanoin was obtained in mitochondria and outer mitochondrial membranes, while in inner mitochondrial membranes the amounts of [3H]phosphatidylglycerol and [3H]phosphatidylglycerolphosphate accumulated were approximately the same. In general, prolongation of the incubation time decreased the relative amounts of [3H]phosphatidylglycerolphosphate and increased the amount of accumulated [3H]phosphatidylglycerol, but the absolute amounts of these [3H]polyglycerophosphatides were more dependent on fatty acid composition of CDP-diglycerides tested. The following cytidine liponucleotides were tested: CDP-didecanoin, CDP-dipalmitin, CDP-diolein, and CDP-diglycerides containing saturated and unsaturated fatty acids similar to those in egg yolk lecithin. The formation of [3H]cardiolipin from [3H]phosphatidylglycerol in the presence of CDP-didecanoin and Mn2+ was found in both the outer and inner mitochondrial membranes.  相似文献   

7.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both pro-mitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

8.
Fatty acid compositions of the compound eyes of insects (soldier-bug, Hemiptera, and silk moth, Lepidoptera), crustaceans (crayfish and grapsid crab, Decapoda) and inner and outer segments of visual cells of a squid (Cephalopoda, Mollusca) were analyzed by gaschromatography for interspecific comparison. Fatty acid compositions showed great variation among species. In insect compound eyes, 16:0 and 18:0 were the main saturated fatty acids, and 18:1 was the dominant unsaturated fatty acid. Silk moth eyes contained, in addition, considerable amounts of 18:2 and 20:5. In crustacean compound eyes, the main saturated fatty acids were 16:0 and 18:0, and 14:0 (5.0%) was only detected in grapsid crabs; the main unsaturated fatty acids were 20:4, 20:5 and 22:6. Both whole eyes and rhabdom fraction of crayfish showed similar profiles of fatty acid compositions. Both inner and outer segments of squid retinae were characterized by high amounts of unsaturated fatty acids, especially 22:6. Compound eyes of grapsid crabs were used for the experiments on seasonal changes of fatty acid compositions. UFA/SFA ratios (weight in % of unsaturated fatty acids saturated fatty acids) were lowest (1.0) in July and highest (2.5) in March, and unsaturation indexes (average number of double bonds per molecule) were lowest (1.5) in July and highest (2.3) in March. Fatty acids 18:0 and 20:1 showed a significant correlation with the changes of seasonal temperature. Fatty acid analysis of the developing compound eyes of silk moths during the pupal stage revealed that eicosapentanoic acid (20:5) increased remarkably in parallel with the development of photoreceptive membranes, the rhabdoms. This suggests that eicosapentaenoic acid may play an important role in formation and function of rhabdoms.  相似文献   

9.
The properties of porcine platelet acyltransferases which catalyze the incorporation of unsaturated fatty acids into the 2 positions of phospholipids were compared with those of porcine liver microsomes and rat liver microsomes. There were significant differences in the relative rates of incorporation of acyl groups into phospholipids as catalyzed by the membranes from different species and organs. The 1-acylglycerophosphate acyltransferase system showed relatively broad specificity for saturated and unsaturated fatty acids, with 14- to 20-carbon chains, while unsaturated acyl-CoAs with 18- and 20-carbon chains were generally good substrates in the acylations of 1-acylglycerophosphocholine and 1-acylglycerophosphoinositol. ω-3 and ω-6 unsaturated fatty acids were recognized differently by different acyltransferase systems in platelets. When activities for combinations of ω-3 and ω-6 unsaturated acyl-CoAs with the same number of carbons and with similar number of double bonds were compared, ω-6 fatty acids were relatively more preferred substrates than ω-3 fatty acids for the 1-acylglycerophosphoinositol acyltransferase system as compared with 1-acylglycerophosphocholine acyltransferase system.  相似文献   

10.
The nature of the interactions between cytochrome c oxidase and the phospholipids in mitochondrial membranes has been investigated by varying the nature of the fatty acyl components of Saccharomyces cerevisiae. A double fatty acid yeast mutant, FAI-4C, grown in combinations of unsaturated (oleic, linoleic, linolenic, and eicosenoic) and saturated (lauric and palmitic) fatty acids, was employed to modify mitochondrial membranes. The supplemented fatty acids constituted a unique combination of different acyl chain lengths with varying degrees of unsaturation which were subsequently incorporated into mitochondrial phospholipids. Phosphatidylethanolamine and cardiolipin, the predominant phospholipids of the inner mitochondrial membrane, were characterized by their high levels of supplemented unsaturated fatty acids. Increasing the chain length or the degree of unsaturation of mitochondrial membrane phospholipids had no effect on altering the nature of the phospholipid polar head group but did result in a profound change on the specific activity of cytochrome c oxidase. When studied under conditions of different ionic strengths and pHs the enzyme's activity, as documented by Eadie-Hofstee plots, showed biphasic kinetics. The kinetic parameters for the low affinity reaction were greatly influenced by the changes in the membrane fatty acids and only marginal effects were noted at the high affinity reaction site. The discontinuities in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, monitored at increasing temperatures, suggested that changes in membrane fluidity were conditioned by alterations in mitochondrial membrane fatty acid constituents. These results indicate that the lipid changes affecting the low affinity binding site of cytochrome c oxidase may be the result of lipid-protein interactions which lead to enzyme conformational changes or may be due to gross changes in membrane fluidity. It may, therefore, follow that this enzyme site may be embedded in or be juxtaposed to the outer surface of the inner mitochondrial membrane bilayer in contrast to the high affinity site which has been shown to be significantly above the membrane plane.  相似文献   

11.
1. The mitochondria isolated from human or rat liver were fractionated into submitochondrial particles and purified inner and outer membrane. According to different marker enzymes the inner membranes were enriched about 5-6-fold and the outer membranes about 12-14-fold. The electron microscopical appearance of the membranes was that expected on the basis of enzymic characterization. 2. A comparison of the average amino acid composition of the membrane proteins from the two types of mitochondria has been made. In the case of submitochondrial particles there were statistically significant differences between the human and rat hydrolysates for only five amino acids. Analysing the purified mitochondrial membranes there were significant differences between the two species for nine amino acids in the case of outer membranes and for 12 amino acids in the case of inner membranes. 3. With one exception all amino acids that were increased or decreased in the outer membrane exhibited a similar trend in the inner membrane of human compared with rat liver mitochondria. It appears that liver mitochondrial membranes have a species-dependent pattern of amino acid composition of their proteins.  相似文献   

12.
Homeoviscous adaptation of biological membranes to high hydrostatic pressure has been investigated by determining the differences in lipid composition of membranes from fish obtained from depths between 200 and 4000 m. The fatty acid composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine/inositol and cardiolipin from a liver mitochondrial fraction was analysed by capillary gas-liquid chromatography. The ratio of saturated to unsaturated fatty acids significantly and negatively related to depth in PC and PE as predicted by homeoviscous adaptation to pressure. Thus, deep sea species possess greater proportions of unsaturated fatty acids than shallow species. Cardiolipin showed the opposite trend. An unsaturation index was not significantly related to depth in any phospholipid fraction.  相似文献   

13.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

14.
Injections of albino rats with antioxidants of the ionol group cause cyclic changes in the energy state of liver mitochondria which are correlated with changes in the fatty acid composition of mitochondrial membranes. The increase in the degree of coupling between oxidation and phosphorylation coincides in time with the increment in the content of saturated fatty acids and a decrease in the unsaturated fatty acid content in the total fraction of mitochondrial membrane lipids. Conversely, the activation of the external pathway of NADH oxidation and a decrease of the respiratory control are correlated with the diminution of the saturated fatty acid content and an increased percentage of unsaturated fatty acids. These changes are especially well pronounced in the case of fatty acids carrying 18 carbon atoms.  相似文献   

15.
The phospholipid content of mitochondrial membranes from slices of potato tuber (Solanum tuberosum) remains stable during aging. The phospholipid compositions of whole mitochondria and inner membranes do not vary during aging whereas the concentrations of phosphatidylinositol and phosphatidyl-glycerol in outer membranes are slightly amplified. The saturation of outer membrane fatty acids is slightly increased during aging. Gel electrophoresis of mitochondrial membrane proteins show slight variations of one polypeptide in outer membranes and of three polypeptides in inner membranes. These results suggest parallel variations of lipids and proteins in membranes during aging, in marked contrast with the large modifications observed in mitochondrial activities.  相似文献   

16.
The membrane of vesicular stomatitis virus (VSV) contains two distinct pools of phosphatidylethanolamine molecules which reside in the inner and outer phospholipid monolayers, respectively. 36% of the total membrane phosphatidylethanolamine is found in the outer monolayer while 64% is found in the inner. The two pools of VSV phosphatidylethanolamine can be distinguished operationally by the fact that only outer phosphatidylethanolamine is reactive in intact virions with the membrane-impermeable reagent trinitrobenzenesulfonate (TNBS). We have made use of this property to separate inner from outer VSV phosphatidylethanolamine and to determine the fatty acyl chain compositions of the two phosphatidylethanolamine pools separately. The results show that compared to outer phosphatidylethanolamine, inner phosphatidylethanolamine molecules contain a significantly higher proportion of unsaturated fatty acyl chains. Furthermore, whereas the proportion of unsaturated fatty acyl chains was found to be quite similar at the 1 and 2 glycerol carbon atoms in inner phosphatidylethanolamine, a marked dissimilarity was observed in outer phosphatidylethanolamine; outer phosphatidylethanolamine was enriched in saturated fatty acyl chains at the 1 position and in unsaturated fatty acyl chains at the 2 position. The differential fatty acyl chain composition of inner compared to outer phosphatidylethanolamine indicates that rapid, random transmembrane migration (flip-flop) of phosphatidylethanolamine does not occur in the VSV membrane. The nature of the fatty acyl chain asymmetry observed in VSV phosphatidylethanolamine does not support the view that the  相似文献   

17.
Analyses of the fatty acid composition of the outer and inner pools of sphingomyelin in the human erythrocyte membrane revealed significant differences in molecular species composition of these two pools. The sphingomyelin in the inner monolayer, representing 15–20% of the total sphingomyelin content of this membrane, is characterized by a relatively high content (73%) of fatty acids, which have less than 20 carbon atoms, whereas these account for only 31% of the total fatty acids in the sphingomyelin in the outer leaflet. On the other hand, the ratio saturated/unsaturated fatty acids in the two pools is similar. Significant differences are also observed for the fatty acid composition of the sphingomyelin in human serum when compared to that in the outer monolayer of the corresponding red cell. These results are interpreted to indicate an (almost) complete absence of transbilayer movements of sphingomyelin molecules in the human erythrocyte membrane, whereas an exchange of this phospholipid between the red cell membrane and serum is either virtually absent, or affects only a minor fraction of the sphingomyelin in the outer membrane layer.  相似文献   

18.
Rats were maintained on nutritionally complete diets enriched in unsaturated (menhaden fish oil) or saturated (butter fat) triacylglycerols. After 4 weeks, the animals were killed, proximal small intestinal brush-border membranes were prepared, and examined and compared with respect to their lipid composition, molecular species of phosphatidylcholine, lipid fluidity and sodium-dependent D-glucose transport. Membranes prepared from the two dietary groups were found to possess similar ratios of cholesterol/phospholipid (mol/mol), sphingomyelin/phosphatidylcholine (mol/mol), and protein/lipid (w/w). In contrast to these findings, however, striking differences were noted in the total fatty acid compositions of these membranes. Plasma membranes prepared from animals fed the fish oil diet possessed higher percentages of saturated fatty acids as well as (n - 3) unsaturated fatty acids and lower percentages of monounsaturated and (n - 6) unsaturated fatty acids than those prepared from animals fed the butter fat diet. Analysis of the molecular species of phosphatidylcholine by HPLC, moreover, revealed that membranes from rats fed fish oil had higher levels of 16:0-20:5, 16:0-22:6 and 18:0-20:5 and lower levels of 18:0-18:2 and 16:0-18:1 than their butter fat counterparts. As assessed by steady-state fluorescence polarization, differential polarized phase fluorometric and excimer/monomer fluorescence intensity techniques using various fluorophores, the lipid fluidity of membranes from rats fed fish oil was also found to be significantly lower compared to membranes from rats fed butter fat. Finally, comparison of the kinetic parameters of Na+-dependent D-glucose transport revealed that fish oil-membrane vesicles had a higher maximum velocity (Vmax) than butter fat membrane vesicles but a similar Km for glucose.  相似文献   

19.
The lipid compositions of the gradient-purified gastric microsomal membranes from the fundic mucosa of pig, rabbit, and frog were determined. The total lipid content varied widely. Compared to the rabbit (21.6 ± 0.6 mg/100 mg protein), the pig had about twice as much and the frog about three times as much lipid. The levels of cholesterol were higher in both mammalian species (about 32% of the lipid) compared to frog (23%). Phospholipids accounted for about 45, 54, and 52% of the total microsomal lipids from pig, rabbit, and frog and the molar ratios of cholesterol to phospholipid in the three species were 1.95, 1.6, and 1.17, respectively. Phosphatidyl choline and phosphatidyl ethanolamine together constituted about 75% of the total phospholipids in pig and frog and 93% in rabbit gastric microsomes. Sphingomyelin comprised 19.3, 3.2, and 1.5% in pig, rabbit, and frog, respectively. Phosphatidyl inositol constituted 5, 2.7, and 23.6% in pig, rabbit, and frog, respectively. The ratios of phosphatidyl ethanolamine to phosphatidyl choline were 1.17, 1.1, and 0.85 in pig, rabbit, and frog, respectively. The saturated fatty acids 16:0 and 18:0 and the unsaturated fatty acid 18:1 and 18:2 were the predominant fatty acids in all phospholipids. The ratios of saturated to unsaturated fatty acids were between 0.8 and 0.9 in phosphatidyl choline and 0.27 and 0.5 in phosphatidyl ethanolamine from all three species. The contributions by saturated fatty acids were much more in phosphatidyl inositol and sphingomyelin than in phosphatidyl choline and phosphatidyl ethanolamine from all species. Position 1 of phosphatidyl choline had 63% saturated and 37% unsaturated fatty acids; while the reverse was true for position 2. Phosphatidyl ethanolamine, however, had 85% saturated fatty acids in position 1 compared to only 25% in position 2. Arachidonic acid (20:4) was present in significant amounts in all species located exclusively at position 2 of both phosphatidyl choline and phosphatidyl ethanolamine.  相似文献   

20.
Here we describe for the first time isolation and biochemical characterization of highly purified mitochondrial inner and outer membranes from Pichia pastoris and systematic lipid analysis of submitochondrial fractions. Mitochondria of this yeast are best developed during growth on glycerol or sorbitol, but also on methanol or fatty acids. To obtain organelle membranes at high quality, methods of isolation and subfractionation of mitochondria originally developed for Saccharomyces cerevisiae were adapted and employed. A characteristic feature of the outer mitochondrial membrane of P. pastoris is the higher phospholipid to protein ratio and the lower ergosterol to phospholipid ratio compared to the inner membrane. Another marked difference between the two mitochondrial membranes is the phospholipid composition. Phosphatidylcholine and phosphatidylethanolamine are major phospholipids of both membranes, but the inner membrane is enriched in cardiolipin, whereas the outer membrane contains a high amount of phosphatidylinositol. The fatty acid composition of both mitochondrial membranes is similar. Variation of the carbon source, however, leads to marked changes of the fatty acid pattern both in total and mitochondrial membranes. In summary, our data are the first step to understand the P. pastoris lipidome which will be prerequisite to manipulate membrane components of this yeast for biotechnological purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号