首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The CD95 (APO-1/Fas) receptor has attracted great interest in recent years because it transduces an apoptotic signal in a variety of different tissues. CD95 belongs to the NGF/TNF-receptor superfamily, members of which need to be trimerized by specific protein ligands in order to generate a signal. This review focuses on recent advances in the understanding of the proximal signal transduction mechanism of CD95. The cloning of numerous proteins that interact with CD95 and other members of this receptor family and the in vivo identification of several proteins that associate with CD95 in a ligand-dependent fashion opens the way to delineate the death pathway and to explain crosstalk among these receptors on a molecular basis.  相似文献   

3.
Regulation of infection with Histoplasma capsulatum by TNFR1 and -2   总被引:2,自引:0,他引:2  
The concerted action of several cytokines is necessary for resolution of both primary and secondary infection with Histoplasma capsulatum. Among the soluble factors that contribute to tissue sterilization, TNF-alpha stands as a central mediator of protective immunity to this fungus. In this study, we explored the regulation of protective immunity by TNFR1 and -2. In primary pulmonary infection, both TNFR1-/- and -2-/- mice manifested a high mortality after infection with H. capsulatum, although TNFR1-/- mice were more susceptible than TNFR2 -/- mice. Overwhelming infection in the former was associated with a pronounced decrement in the number of inflammatory cells in the lungs and elevated IFN-gamma and TNF-alpha levels in the lungs. In contrast, IFN-gamma levels were markedly decreased in TNFR2-/- mice, and treatment with this cytokine restored protective immunity. Lung macrophages from both groups of knockout mice released substantial amounts of NO. Upon secondary infection, TNFR2-/- mice survived rechallenge and cleared infection as efficiently as C57BL/6 animals. In contrast, mice given mAb to TNFR1 succumbed to reexposure, and the high mortality was accompanied by a significant increase in fungal burden in the lungs. Both IL-4 and IL-10 were elevated in the lungs of these mice. The results demonstrate the pivotal influence of TNFR1 and -2 in controlling primary infection and highlight the differences between these receptors for regulation reexposure histoplasmosis.  相似文献   

4.
Mutations in the death domain of the death receptor CD95 (APO-1/Fas) cause lymphoproliferation and autoimmune disease in both lpr(cg) mice and in patients with autoimmune lymphoproliferative syndrome (ALPS) type Ia. By testing lymphocytes from ALPS type Ia patients, comparing heterozygous with homozygous lpr(cg) mice and coexpressing wild-type and mutant CD95 receptors, we demonstrate that induction of apoptosis requires two wild-type alleles of CD95. By contrast, nuclear factor-kappaB (NF-kappaB) can be fully activated in cells expressing both a mutant and a wild-type CD95 allele, suggesting different thresholds to activate the two signalling pathways. This was confirmed by testing lymphocytes from heterozygous lpr mice, which showed reduced sensitivity to CD95-mediated apoptosis but normal activation of NF-kappaB when compared with wild-type mice. Mutations in CD95 may eliminate the tumour-suppressive function of CD95, at the same time allowing induction of survival or proliferative pathways, which could contribute to the increased risk for lymphoma seen in ALPS type Ia patients.  相似文献   

5.
Excitatory synaptic transmission is largely mediated by AMPA receptors (AMPARs) present at the postsynaptic density. Recent studies in single molecule tracking of AMPAR has revealed that extrasynaptic AMPARs are highly mobile and thus might serve as a readily available pool for their synaptic recruitment during synaptic plasticity events such as long-term potentiation (LTP). Because this hypothesis relies on the cell's ability to increase the number of diffusional traps or 'slots' at synapses during LTP, we will review a number of protein-protein interactions that might impact AMPARs lateral diffusion and thus potentially serve as slots. Recent studies have identified the interaction between the AMPAR-Stargazin complex and PSD-95 as the minimal components of the diffusional trapping slot. We will overview the molecular basis of this critical interaction, its activity-dependent regulation and its potential contribution to LTP.  相似文献   

6.
alpha-Fetoprotein (AFP) is an oncoembryonal protein with multiple cell growth regulating, differentiating and immunosuppressive activities. Previous studies have shown that treatment of tumor cells in vitro with 1-10 microM AFP produces significant suppression of tumor cell growth by inducing dose-dependent cytotoxicity, but the molecular mechanisms underlying these AFP functions are obscure. Here, we show that AFP cytotoxicity is closely related to apoptosis, as shown by cell morphology, nuclear DNA fragmentation and caspase-3-like activity resulting in cleavage of poly(ADP-ribose) polymerase. Apoptosis was significantly inhibited by a CPP32 family protease inhibitor whereas a general caspase inhibitor had no inhibitory effect, showing some enhancement of AFP-mediated cell death. Using fluorogenic caspase substrates, we found that caspase-3-like proteases were activated as early as 4 h after treatment of Raji cells with 15 microM AFP, whereas caspase-1, caspase-8, and caspase-9-like activity was not detected during the time interval 0.5-17 h. AFP treatment of Raji cells increased Bcl-2 protein, showing that AFP-induced apoptosis is not explained by downregulation of the Bcl-2 gene. This also suggests that AFP operates downstream of the Bcl-2-sensitive step. AFP notably decreased basal levels of soluble and membrane-bound Fas ligand. Incubation of AFP-sensitive tumor cells (HepG2, Raji) with neutralizing anti-Fas, anti-tumor necrosis factor receptor (TNFR)1 or anti-TNFR2 mAb did not prevent AFP-induced apoptosis, demonstrating its independence of Fas-dependent and TNFR-dependent signaling. In addition, it was found that cells resistant to TNF-induced (Raji) or Fas-induced (MCF-7) apoptosis are, nevertheless, sensitive to AFP-mediated cell death. In contrast, cells sensitive to Fas-mediated cell death (Jurkat) are completely resistant to AFP. Taken as a whole, our data demonstrate that: (a) AFP induces apoptosis in tumor cells independently of Fas/Fas ligand or TNFR/TNF signaling pathways, and (b) AFP-mediated cell death involves activation of the effector caspase-3-like proteases, but is independent of upstream activation of the initiator caspase-1, caspase-8, and caspase-9-like proteases.  相似文献   

7.
The CD95 receptor: apoptosis revisited   总被引:4,自引:0,他引:4  
CD95 is the quintessential death receptor and, when it is bound by ligand, cells undergo apoptosis. Recent evidence suggests, however, that CD95 mediates not only apoptosis but also diverse nonapoptotic functions depending on the tissue and the conditions.  相似文献   

8.
The Raf-1 kinase is regulated by phosphorylation, and Ser259 has been identified as an inhibitory phosphorylation site. Here we show that the dephosphorylation of Ser259 is an essential part of the Raf-1 activation process, and further reveal the molecular role of Ser259. The fraction of Raf-1 that is phosphorylated on Ser259 is refractory to mitogenic stimulation. Mutating Ser259 elevates kinase activity because of enhanced binding to Ras and constitutive membrane recruitment. This facilitates the phosphorylation of an activating site, Ser338. The mutation of Ser259 also increases the functional coupling to MEK, augmenting the efficiency of MEK activation. Our results suggest that Ser259 regulates the coupling of Raf-1 to upstream activators as well as to its downstream substrate MEK, thus determining the pool of Raf-1 that is competent for signalling. They also suggest a new model for Raf-1 activation where the release of repression through Ser259 dephosphorylation is the pivotal step.  相似文献   

9.
The CD95 (Apo-1/Fas)/CD95 ligand (CD95L) system is best characterized as a trigger of apoptosis. Nevertheless, despite broad expression of CD95L and CD95 in the developing brain, absence of functional CD95 (lpr mice) or CD95L (gld mice) does not alter neuronal numbers. Here, we report that in embryonic hippocampal and cortical neurons in vivo and in vitro CD95L does not induce apoptosis. Triggering of CD95 in cultured immature neurons substantially increases neurite branches by promoting their formation. The branching increase occurs in a caspase-independent and death domain-dependent manner and is paralleled by an increase in the nonphosphorylated form of Tau. Most importantly, lpr and gld mutants exhibit a reduced number of dendritic branches in vivo at the time when synapse formation takes place. These data reveal a novel function for the CD95 system and add to the picture of guidance molecules in the developing brain.  相似文献   

10.
与CD95相关的细胞凋亡和免疫调节   总被引:1,自引:0,他引:1  
郭梁  吴荣聪  王钊 《生命的化学》2002,22(2):106-110
细胞凋亡是一个十分复杂的过程,就目前研究结果来看,CD95系统的调控起到了很重要的作用。它与免疫杀伤、肿瘤免疫和自身免疫疾病密切相关。CD95系统不仅能够维持免疫系统的自身稳定,同时也能发挥免疫反应的作用。在特异性的细胞毒效应作用中,CD95通路是细胞毒性T淋巴细胞(CTL)杀伤靶细胞的一种方式;CD95通路在肿瘤中的失效使之逃避免疫监视和削弱免疫反应;活化的T细胞和B细胞增殖后所出现的细胞凋亡,主要是通过CD95/CD95L诱导的凋亡途径产生。一旦CD95-CD95L体系功能紊乱,就会造成严重的自身免疫疾病。  相似文献   

11.
The capability of soluble CD95L trimers to trigger CD95-associated signaling pathways is drastically increased by oligomerization. The latter can be achieved, for example, by antibodies recognizing a N-terminal epitope tag in recombinant CD95L variants or by genetic engineering-enforced formation of hexamers. Using highly sensitive and accurate binding studies with recombinant CD95L variants equipped with a Gaussia princeps luciferase reporter domain, we found that oligomerization of CD95L has no major effect on CD95 occupancy. This indicates that the higher activity of oligomerized CD95L trimers is not related to an avidity-related increase in apparent affinity and points instead to a crucial role of aggregation of initially formed trimeric CD95L-CD95 complexes in CD95 activation. Furthermore, binding of soluble CD95L trimers was found to be insufficient to increase the association of CD95 with the lipid raft-containing membrane fraction. However, when Gaussia princeps luciferase-CD95L trimers were used as tracers to "mark" inactive CD95 molecules, increased association of these inactive receptors was observed upon activation of the remaining CD95 molecules by help of highly active hexameric Fc-CD95L or membrane CD95L. Moreover, in cells expressing endogenous CD95 and chimeric CD40-CD95 receptors, triggering of CD95 signaling via endogenous CD95 resulted in co-translocation of CD40-CD95 to the lipid raft fraction, whereas vice versa activation of CD95-associated pathways with Fc-CD40L via CD40-CD95 resulted in co-translocation of endogenous CD95. In sum, this shows that signaling-active CD95 molecules not only enhance their own association with the lipid raft-containing membrane fraction but also those of inactive CD95 molecules.  相似文献   

12.
Regulation of Tiam1-Rac signalling   总被引:14,自引:0,他引:14  
The GTPases of the Rho family are molecular switches that play an important role in a wide range of cellular processes and are increasingly implicated in tumourigenesis. Unlike what was found for the Ras oncogenes in tumours, hardly any activating mutations have been found in the genes encoding Rho proteins. In the past, we have identified Tiam1 (T-lymphoma invasion and metastasis) as a specific activator for the Rho-like GTPase Rac. In vivo, Tiam1 deficiency protects against Ras-induced skin carcinogenesis, underscoring the consequences of deregulated signalling for the onset and progression of tumours. Thus, an important level of regulation of signalling via the Rho-like GTPases comes from the specific control of their activators. In this paper, we review what is known on the specific regulation of Tiam1 signalling towards Rac.  相似文献   

13.
14.
15.
Regulation of CD95/Fas signaling at the DISC   总被引:1,自引:0,他引:1  
CD95 (APO-1/Fas) is a member of the death receptor (DR) family. Stimulation of CD95 leads to induction of apoptotic and non-apoptotic signaling pathways. The formation of the CD95 death-inducing signaling complex (DISC) is the initial step of CD95 signaling. Activation of procaspase-8 at the DISC leads to the induction of DR-mediated apoptosis. The activation of procaspase-8 is blocked by cellular FLICE-inhibitory proteins (c-FLIP). This review is focused on the role in the CD95-mediated signaling of the death effector domain-containing proteins procaspase-8 and c-FLIP. We discuss how dynamic cross-talk between procaspase-8 and c-FLIP at the DISC regulates life/death decisions at CD95.  相似文献   

16.
Transforming growth factor-beta1 (TGF-beta1) is a key cytokine involved in the pathogenesis of fibrosis in many organs. We previously demonstrated in renal proximal tubular cells that the engagement of the extracellular polysaccharide hyaluronan with its receptor CD44 attenuated TGF-beta1 signaling. In the current study we examined the potential mechanism by which the interaction between hyaluronan (HA) and CD44 regulates TGF-beta receptor function. Affinity labeling of TGF-beta receptors demonstrated that in the unstimulated cells the majority of the receptor partitioned into EEA-1-associated non-lipid raft-associated membrane pools. In the presence of exogenous HA, the majority of the receptors partitioned into caveolin-1 lipid raft-associated pools. TGF-beta1 increased the association of activated/phosphorylated Smad proteins with EEA-1, consistent with activation of TGF-beta1 signaling following endosomal internalization. Following addition of HA, caveolin-1 associated with the inhibitory Smad protein Smad7, consistent with the raft pools mediating receptor turnover, which was facilitated by HA. Antagonism of TGF-beta1-dependent Smad signaling and the effect of HA on TGF-beta receptor associations were inhibited by depletion of membrane cholesterol using nystatin and augmented by inhibition of endocytosis. The effect of HA on TGF-beta receptor trafficking was inhibited by inhibition of HA-CD44 interactions, using blocking antibody to CD44 or inhibition of MAP kinase activation. In conclusion, we have proposed a model by which HA engagement of CD44 leads to MAP kinase-dependent increased trafficking of TGF-beta receptors to lipid raft-associated pools, which facilitates increased receptor turnover and attenuation of TGF-beta1-dependent alteration in proximal tubular cell function.  相似文献   

17.
18.
The TGF-beta superfamily of secreted signalling molecules plays a pivotal role in the regulation of early embryogenesis, organogenesis and adult tissue homeostasis. Here we report the identification of Xenopus N-acetylgalactosaminyltransferase-like 1 (xGalntl-1) as a novel important regulator of TGF-beta signalling. N-acetylgalactosaminyltransferases mediate the first step of mucin-type glycosylation, adding N-acetylgalactose to serine or threonine side chains. xGalntl-1 is expressed in the anterior mesoderm and neural crest territory at neurula stage, and in the anterior neural crest, notochord and the mediolateral spinal cord at tailbud stage. Inhibition of endogenous xGalntl-1 protein synthesis, using specific morpholino oligomers, interfered with the formation of anterior neural crest, anterior notochord and the spinal cord. Xenopus and mammalian Galntl-1 inhibited Activin as well as BMP signalling in the early Xenopus embryo and in human HEK 293T cells. Gain- and loss-of-function experiments showed that xGalntl-1 interferes with the activity of the common TGF-beta type II receptor ActR-IIB in vivo. In addition, our biochemical data demonstrated that xGalntl-1 specifically interferes with the binding of ActR-IIB to Activin- and BMP-specific type I receptors. This inhibitory activity of xGalntl-1 was dependent on mucin-type glycosylation, as it was sensitive to the chemical inhibitor benzyl-GalNAc. These studies reveal an important role of a N-acetylgalactosaminyltransferase in the regulation of TGF-beta signalling. This novel regulatory mechanism is evolutionarily conserved and, thus, might provide a new paradigm for the regulation of TGF-beta signalling in vertebrates.  相似文献   

19.
Activation of the cell surface CD95 receptor triggers a cascade of signaling events, including assembly of the death-inducing signaling complex (DISC), that culminate in cellular apoptosis. In this study, we demonstrate a general requirement of receptor internalization for CD95 ligand-mediated DISC amplification, caspase activation and apoptosis in type I cells. Recruitment of DISC components to the activated receptor predominantly occurs after the receptor has moved into an endosomal compartment and blockade of CD95 internalization impairs DISC formation and apoptosis. In contrast, CD95 ligand stimulation of cells unable to internalize CD95 results in activation of proliferative Erk and NF-kappaB signaling pathways. Hence, the subcellular localization and internalization pathways of CD95 play important roles in controlling activation of distinct signaling cascades to determine divergent cellular fates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号