首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Drosophila, small RNAs bound to Piwi proteins are epigenetic factors transmitted from the mother to the progeny germline. This ensures 'immunization' of progeny against transposable elements.  相似文献   

2.
Small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and trans-acting siRNAs (ta-siRNAs), mediate gene expression and epigenetic regulation. While siRNAs are highly diverged, miRNAs and ta-siRNAs are generally conserved but many are differentially expressed between related species and in interspecific hybrids and allopolyploids. On one hand, combination of diverged maternal and paternal siRNAs in the same nucleus may exert cis-acting and trans-acting effects on transposable elements (TEs) and TE-associated genes, leading to genomic instability and endosperm and embryo failures, constituting a bottleneck for the evolution of hybrids and polyploids. On the other hand, cis and trans-acting small RNAs induce quantitative and qualitative changes in epigenetic regulation, leading to morphological variation and hybrid vigor in F1 hybrids and stable allopolyploids as well as transgressive phenotypes in the progeny, increasing a potential for adaptive evolution.  相似文献   

3.
Much early work on environmental stress, including ionizing radiation and environmental toxins, emphasised their action on DNA and subsequent mutagenesis in long term effects including germ cell mutagenesis, carcinogenesis and trans-generational effect. However, recent studies are increasingly pointing a complementary role of epigenetic effects in these processes. While a substantial part of the literature focuses on DNA methylation, there is increasing recognition of the role of non-coding RNAs, including small-, micro-, and pi-RNAs, as well as transposable elements. These play key roles in carcinogenesis, and in germ cell changes including trans-generational effects.  相似文献   

4.
5.
6.
7.
8.
9.
PIWI subfamily Argonaute proteins and small RNAs bound to them (PIWI interacting RNA, piRNA) control mobilization of transposable elements (TE) in the animal germline. piRNAs are generated by distinct genomic regions termed piRNA clusters. piRNA clusters are often extensive loci enriched in damaged fragments of TEs. New TE integration into piRNA clusters causes production of TE-specific piRNAs and repression of cognate sequences. piRNAs are thought to be generated from long single-stranded precursors encoded by piRNA clusters. Special chromatin structures might be essential to distinguish these genomic loci as a source for piRNAs. In this review, we present recent findings on the structural organization of piRNA clusters and piRNA biogenesis in Drosophila and other organisms, which are important for understanding a key epigenetic mechanism that provides defense against TE expansion.  相似文献   

10.
11.
Sustainable harvest: managing plasticity for resilient crops   总被引:1,自引:0,他引:1  
Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information‐led agronomy and in recognizing the role of epigenetic variation in crop breeding.  相似文献   

12.
13.
14.

Background  

Dosage compensation in Drosophila is the epigenetic process by which the expression of genes located on the single X-chromosome of males is elevated to equal the expression of X-linked genes in females where there are two copies of the X-chromosome. While epigenetic mechanisms are hypothesized to have evolved originally to silence transposable elements, a connection between transposable elements and the evolution of dosage compensation has yet to be demonstrated.  相似文献   

15.
16.
Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.  相似文献   

17.
18.
19.
Short interspersed elements (SINEs) and long interspersed elements (LINEs) are transposable elements in eukaryotic genomes that mobilize through an RNA intermediate. Understanding their evolution is important because of their impact on the host genome. Most eukaryotic SINEs are ancestrally related to tRNA genes, although the typical tRNA cloverleaf structure is not apparent for most SINE consensus RNAs. Using a cladistic method where RNA structural components were coded as polarized and ordered multistate characters, we showed that related structural motifs are present in most SINE RNAs from mammals, fishes and plants, suggesting common selective constraints imposed at the SINE RNA structural level. Based on these results, we propose a general multistep model for the evolution of tRNA-related SINEs in eukaryotes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号