首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the chemical and physicochemical characteristics of dissolved organic carbon in the Ado River and the Yasu River, the main rivers flowing into Lake Biwa, the adsorption behavior onto hydrous iron oxide (HIO) and the reactivity to KMnO4 oxidant were investigated in parallel with measurement of the distribution profiles of dissolved organic carbon (DOC) along the rivers. In one year of observation at the mouths of the two rivers, DOC concentrations were found to vary in the Ado over the range 0.28–1.21 mg C l−1 and in the Yasu over the range 1.01–2.68 mg C l−1. Act-DOC, one of the fractions separated from the total DOC by its adsorption-active character onto HIO at pH 4, was thought primarily to control the variation of total DOC, as in Lake Biwa. The int-DOC, another fraction separated by its adsorption-inert or -inactive character onto HIO, remained at almost a steady value around 0.18 ± 0.07 mg C l−1 in the Ado, which was lower than that (0.35 ± 0.05 mg C l−1) in Lake Biwa. The act-DOC in river waters was reactive to KMnO4 oxidant, showing a linear relation with the amount of permanganate consumed for the reaction (chemical oxygen demand: COD). In river waters, the relation can be approximated by a straight line expressed as COD (mg O2 l−1) = 0.64 × act-DOC (mg C l−1) − 0.02. In contrast, in the lake water the relation was COD (mg O2 l−1) = 0.97 × act-DOC (mg C l−1) − 0.50. Received: March 3, 1999 / Accepted: December 2, 1999  相似文献   

2.
The spatial distribution and seasonal variation in the concentrations in Lake Biwa of pesticides used in paddy fields were studied. Lake Biwa is the largest lake in Japan and is a recognized water resource for 14 million people in the Kinki district. Samples were collected nine times from April to December 2001 at ten sites within the lake and at the mouths of six influent rivers. Weekly sampling was also carried out at a single site on an effluent river. Among the 20 pesticides analyzed, the detection frequencies in surface water were almost 100% for simetryn, bromobutide, and isoprothiolane; around 75% for molinate and pyroquilon; around 30% for three herbicides and one fungicide; and almost zero for the remaining substances. The maximum concentrations of pesticides detected frequently in the lake were in the range 0.1–0.4µgl–1. The occurrence of a few pesticides below the thermocline may be explained by thermal stratification and vertical circulation. Although the thermocline suppressed vertical diffusion in spring and summer during pesticide application periods, a few pesticides remaining at the surface of the lake in winter were transported to the hypolimnion by vertical circulation and remained there even after the reestablishment of the thermocline. The half-lives of pesticides in the lake were estimated to be more than a year for simetryn, half a year for bromobutide, 1.5 months for molinate, and 1 month for dimepiperate. The main cause of elimination for molinate and dimepiperate was estimated to be degradation, that for simetryn was outflow, and for bromobutide both degradation and outflow were significant.  相似文献   

3.
The genetic variations—and the time dependence of such variations—of natural populations of the white-spotted charr ,Salvelinus leucomaenis, in the Lake Biwa water system as well as those of a hatchery-reared population were inferred from AFLP. Upon the application of principal coordinate analysis using 118 polymorphic AFLP fragments based on the Jaccard similarity index, specimens of each of six natural local populations from the inlet rivers of Lake Biwa grouped roughly together, suggesting that each local population was genetically differentiated. The hatchery-reared population was shown to be closely related to the local population in the Seri River, suggesting that the Seri River population originated from hatchery-reared charr due to extensive stocking. Furthermore, specimens of the Yasu River grouped in a somewhat different position from the other natural populations, agreeing well with its geographic distance from the other populations. The nucleotide diversities of six natural populations (Harihata River, Ishida River, two reaches of the Takatoki River, Ane River, and Yasu River) in 2002 or 2003 were relatively low (π = 0.067–0.146%) compared with that of the Seri River (0.278%) and the hatchery-reared charr (0.316%). The nucleotide diversity in the five local populations (Ishida River, two reaches of the Takatoki River, Ane River, and Yasu River) remained at a low level from 1994 to 2002/2003, but only the nucleotide diversity in the Harihata River actually decreased. From 1994 to 2002/2003, the nucleotide diversity in the Seri River remained at a higher level among the natural populations from 1994 to 2002/2003; it was enhanced by the artificial release of hatchery-reared charr before 1994. In order to conserve the genetic diversity of the white-spotted charr in the Lake Biwa water system, it is necessary to prevent the stocking of hatchery-reared charr in reaches where hatchery-reared charr have not previously been stocked.  相似文献   

4.
We studied concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the eutrophic Temmesjoki River and Estuary in the Liminganlahti Bay in 2003–2004 and evaluated the atmospheric fluxes of the gases based on measured concentrations, wind speeds and water current velocities. The Temmesjoki River was a source of CO2, CH4 and N2O to the atmosphere, whereas the Liminganlahti Bay was a minor source of CH4 and a minor source or a sink of CO2 and N2O. The results show that the fluxes of greenhouse gases in river ecosystems are highly related to the land use in its catchment areas. The most upstream river site, surrounded by forests and drained peatlands, released significant amounts of CO2 and CH4, with average fluxes of 5,400 mg CO2–C m−2 d−1 and 66 mg CH4–C m−2 d−1, and concentrations of 210 μM and 345 nM, respectively, but N2O concentrations, at an average of 17 nM, were close to the atmospheric equilibrium concentration. The downstream river sites surrounded by agricultural soils released significant amounts of N2O (with an average emission of 650 μg N2O–N m−2 d−1 and concentration of 22 nM), whereas the CO2 and CH4 concentrations were low compared to the upstream site (55 μM and 350 nM). In boreal regions, rivers are partly ice-covered in wintertime (approximately 5 months). A large part of the gases, i.e. 58% of CO2, 55% of CH4 and 36% of N2O emissions, were found to be released during wintertime from unfrozen parts of the river.  相似文献   

5.

Anthropogenic nutrient inputs fuel eutrophication and hypoxia ([O2]?<?2 mg L?1), threatening coastal and near shore environments across the globe. The world’s second largest anthropogenic coastal hypoxic zone occurs annually along the Louisiana (LA) shelf. Springtime loading of dissolved inorganic nitrogen (DIN) from the Mississippi River, combined with summertime stratification and increased water residence time on the shelf, promotes establishment of an extensive hypoxic zone that persists throughout the summer. We investigated the patterns of pelagic denitrification and methane (CH4) oxidation along the LA shelf. Microbial activity rates were determined along with concentrations of dissolved nutrients and greenhouse gases, nitrous oxide (N2O) and CH4, during summer in 2013, 2015, and 2016. We documented denitrification rates up to 1900 nmol N L?1 d?1 and CH4 oxidation rates as high as 192 nmol L?1 d?1 in hypoxic waters characterized by high concentrations of N2O (range: 1 to 102 nM) and CH4 (range: 3 to 641 nM). Ecosystem scaling estimates suggest that pelagic denitrification could remove between 0.1 and 47% of the DIN input from the Mississippi River, whereas CH4 oxidation does not function as an effective removal process with CH4 escaping to the atmosphere. Denitrification and CH4 oxidizing bacteria within the LA shelf hypoxic zone were largely unable to keep up with the DIN and CH4 inputs to the water column. Rates were variable and physiochemical dynamics appeared to regulate the microbial removal capacity for both nitrate/nitrite and CH4 in this ecosystem.

  相似文献   

6.
Migration of wild and cultivated juvenile honmoroko Gnathopogon caerulescens of from the spawning and nursery areas in Lake Biwa were investigated, both in the Ibanaiko Lagoon and its outlet to Daido River, using beam‐trawl surveys in 2013 and 2014. The study demonstrated migration of G. caerulescens from a nursery lagoon toward Lake Biwa after the juvenile stage. These findings appear to be the first direct evidence for migration of an exclusively pelagic cyprinid species from a littoral nursery to a pelagic adult habitat in a large deep lake.  相似文献   

7.
The spatial distribution and seasonal variation in the concentration and carbon isotopic composition of dissolved methane in a river–lake ecosystem were studied in Lake Biwa, Japan, and its tributary rivers. Methane concentrations in all subsystems examined were supersaturated with respect to the atmosphere. The epilimnion showed higher concentrations of dissolved methane than the hypolimnion in the pelagic zone. Peak methane concentrations were observed at the thermocline. The largest amount of methane in the pelagic water column was recorded at the end of a stagnant period, at which the bottom water of the sublittoral zone (30m in depth) exhibited increased methane concentration. Transect observation of dissolved methane revealed three methane peaks at different water depths in the lake, and river water and the sediments in littoral and sublittoral zones were suggested to be the corresponding sources. Water at the river mouth was replete with dissolved oxygen but also contained a high concentration of methane. The present results suggest that river water and littoral sediment are potential sources of dissolved methane in Lake Biwa, and other sources, such as internal waves, are responsible for increased methane in the pelagic zone at the end of stagnant periods. Carbon stable isotope analysis indicated that there were different sources of dissolved methane, although it was difficult to identify the origins due to high variation of the isotopic composition of methane from different sources.  相似文献   

8.
The average composition of water, bottom sediments, manganese (Mn) crusts, and Mn concretions from Lake Biwa (the largest freshwater lake in Japan) are re-examined, in conjunction with those of seawater, oceanic pelagic clay, and deep-sea Mn nodules. The purpose is to gain additional insights into the geochemical behaviors of elements in Lake Biwa and the ocean, which are quite different in ionic strength (or salinity), pH, water residence times, sediment accumulation rates, carbon fluxes to sediments, and the redox potential in sediments. Excluding a few millimeters of oxic surface sediment, there is no appreciable accumulation of Mn in the Lake Biwa bottom sediments due to reducing condition there. Consequently, other B-type cations [such as iron (Fe), gallium (Ga), copper (Cu), lead (Pb), cobalt (Co), tin (Sn), and bismuth (Bi), with subshell valence electron configuration of d 1−10] are also less concentrated in the lake sediments than in the oceanic pelagic clay. In turn, B-type cations have much higher dissolved concentrations in the lake water than in the ocean. The rare earth elements (REE) mainly form organic complexes in the lake water and carbonate complexes in the ocean. REE are mostly associated with detritus aluminosilicate phases in Lake Biwa sediments but with phosphate phases in deep-sea sediments. Fe and Mn oxide phases are clearly separated in marine Mn nodules and crusts but not in Mn crusts and concretions from Lake Biwa. Useful parameters such as the enrichment factor (E Al) and logarithms of the distribution coefficient (log K d) of elements between solid and liquid phases were estimated in both systems for further discussions.  相似文献   

9.
Chemical and thermal stratification in lakes   总被引:3,自引:0,他引:3  
An index that shows chemical stratification strength [IC-i; i = water quality item such as chlorophyll-a (Chl.a) and soluble phosphorus (SP)] was proposed and compared with one of thermal stratification strength indices, Schmidt’s stability index (SSI), in Shiozu Bay and Lake Biwa, Japan. The proposed indices of IC-i can be easily calculated with at least one set of each water quality data in both the epilimnion and the hypolimnion. The SSI was shown to be consistent with the traditional thermocline index of thermocline strength index (TSI), but SSI is used as the stability index of the whole lake, whereas TSI is used as the stability index near the thermocline. Analyses showed that chemical stratification strength is determined largely by thermal stratification strength. Totally different characteristics of IC-Chl.a and IC-phosphate (PO4) at high SSI in the main North Basin of Lake Biwa and in Shiozu Bay were possibly due to the difference in their volumes and hydrodynamic conditions. The proposed index and relationships are especially useful to roughly determine thermal and chemical stratification when only few water quality data are available.  相似文献   

10.
The dissolved oxygen concentration in the sediment pore water downstream of rivers in the Lake Biwa basin was measured, and the factors affecting the dissolved oxygen concentration were analyzed. In August 2003, nine rivers (Sakai, Nakanoi, Hebisuna, Anziki, Yasu, Echi, Ane, Oh, and Ohura) were surveyed. The dissolved oxygen was depleted in the sediment pore water of the rivers with a high proportion of particles less than 250 μm in size. For these rivers, the difference between the dissolved oxygen concentrations of the river surface water and the pore water was large, ranging from −9.54 to −5.26 mg L−1. It was found that the proportion of land turned to paddy fields has an effect on the percentage of the particles below 250 μm (standard partial regression coefficient = 0.807, p = 0.023). These results suggest that, in the Lake Biwa basin, the sedimentation of the fine particles released from paddy fields results in poor dissolved oxygen in the river sediment downstream. In addition, the water flow conditions in small- and medium-scale rivers without headwaters also affect the sedimentation of suspended particles.  相似文献   

11.
于超  储金宇  白晓华  刘伟龙 《生态学报》2011,31(23):7104-7111
入湖河流携带污染物对洱海水环境的影响日益明显,对洱海入湖水量最大的河流——弥苴河下游水体氮磷进行了连续采样分析,以期为河口湿地建设和水质改善提供基础数据.结果表明:1)弥苴河水质介于地表水Ⅲ-Ⅴ类之间,主要污染物为氮和磷,其中总氮平均浓度为1.17 mg/L,最高浓度达到2.00 mg/L;总磷平均浓度为0.06 mg/L;2)弥苴河下游总氮、总磷浓度丰水期高于枯水期,并呈现出季节性变化规律;3)弥苴河下游水体总氮、总磷年均浓度远高于洱海水体总氮、总磷年均浓度,其中总氮高出2.10倍,总磷高出2.90倍;4)弥苴河下游河段非点源污染占据主导地位.  相似文献   

12.
The dissolved organic carbon (DOC) concentrations in mesotrophic Lake Biwa were determined by a total organic carbon (TOC) analyzer, and DOC molecular size distributions were determined by size exclusion chromatography (SEC) using a fluorescence detector at excitation/emission (Ex/Em) levels of 300/425 nm with the eluent at pH 9.7. The fluorescence wavelengths for detection were chosen from the result of excitation–emission matrix spectrometry (EEM) analysis for dissolved fulvic acid (DFA) extracted from Ado River (peak A, Ex/Em = 260–270/430–440 nm; peak B, Ex/Em = 300–310/420–430 nm). Ado River DFA was eluted with a retention time (RT) of 7.4–8.9 min and the apparent molecular weight was estimated at 22–87 kDa based on the elution curve for the spherical protein molecular weight standard. A DFA peak eluted at the same retention time as Ado River DFA also appeared in all the samples of Lake Biwa water. From the linear relationship between the peak areas with an RT of 7.4–8.9 min by SEC analysis and DOC values of DFA by TOC analysis of a series of DFA samples (r2 = 0.9995), the concentrations of DFA in the lake water were roughly calculated. DFA was distributed within the range 0.25–0.43 mg C l−1 and accounted for 15%–41% of DOC, with the highest ratios observed at a depth of 70 m in August and the lowest at 2.5 m in May.  相似文献   

13.
Dissolved methane (CH4) was measured in the waters of the Changjiang (Yangtze River) Estuary and its adjacent marine area during five surveys from 2002 to 2006. Dissolved CH4 concentrations ranged from 2.71 to 89.2 nM and had seasonal variation with the highest values occurring in summer and lowest in autumn. The horizontal distribution of dissolved CH4 decreased along the freshwater plume from the river mouth to the open sea. Dissolved CH4 in surface waters of the Changjiang was observed monthly at the most downstream main channel station Xuliujing (121o2′E, 31o46′N), which ranged from 16.2 to 126.2 nM with an average of 71.6 ± 36.3 nM. The average annual input of CH4 from the Changjiang to the Estuary and its adjacent area was estimated to be 2.24 mol s−1 equal to 70.6 × 106 mol year−1. Mean CH4 emission rate from the sediments of the Changjiang Estuary in spring was 1.97 μmol m−2 day−1, but it may be higher in summer due to hypoxia in the bottom waters and higher temperatures. The annual sea to air CH4 fluxes from the Changjiang Estuary and its adjacent marine area were estimated to be 61.4 ± 22.6 and 16.0 ± 6.1 μmol m−2 day−1, respectively, using three different gas exchange models. Hence the Changjiang Estuary and its adjacent marine area are net sources of atmospheric CH4.  相似文献   

14.
A comprehensive study on the dynamics of dissolved elements (Mg, Al, Si, P, Ca, V, Cr, Mn, Fe, Ni, Zn, As, Sr, Y, W, and U) in Lake Biwa was carried out using a clean technique. Lake water samples (n = 523) were collected from six stations in the North Basin and three stations in the South Basin. River water samples (n = 178) were collected from 14 major rivers flowing into the North Basin. Rainwater samples (n = 89) were collected at Otsu. The river water was enriched with Mn, Al, Fe, P, and Zn and the rainwater was enriched with Zn, Al, Fe, and Mn compared to North Basin water during winter mixing. The residence times of dissolved species were estimated on the basis of input through the rivers and rain. The residence times for Ca, Mg, and Sr were about 8 years, the same as that for water. Mn, Al, Fe, and Zn showed the shortest residence times (0.05–0.19 year). A budget calculation suggested that more than 60% of the input of dissolved Si, P, V, Cr, Mn, Fe, Ni, and Zn was scavenged and retained in the lake sediments and/or discharged as suspended particles.  相似文献   

15.
The flux of methane (CH4) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4, inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28–96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane‐oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr?1, representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere.  相似文献   

16.
Lakes play an important role in the global carbon cycle, emitting significant amounts of the carbonic greenhouse gases, CO2 and methane (CH4). Nearly all lake studies have reported oxygenated surface waters oversaturated with (and thus continuously emitting) CH4, yet no consistent explanation exists to account for why CH4, which is produced in anoxic zones and consumed in the presence of oxygen, remains in oxic waters across the range of lake sizes. Here, we developed a physical model that defines the spatial CH4 distribution in the surface waters of lakes as a function of CH4 transport from the littoral zone including air–water gas exchange, and tested this in a set of 14 lakes that ranged widely in size (0.07–19,000 km2). Although the model adequately resolved the overall CH4 decline within a lake relative to distance from shore across the range of lake sizes, discrepancies between observations and predictions suggest that other processes modulate surface CH4 distributions. Coupled trends in the stable carbon isotopic signature of CH4 further indicate that the spatial pattern in 30% of the lakes was dominated by a net loss via oxidation, whereas a net input of 13C-depleted CH4 dominated the spatial pattern in 70% of the lakes, suggesting the predominance of pelagic CH4 production in the oxic epilimnia of these lakes. The spatial patterns imposed by the interaction between physical and biological processes may result in a size-dependent underestimation of whole-lake CH4 emissions when based on center samples. Whereas the actual contributions of oxidation and eplimnetic CH4 production are still not well understood, our results demonstrate that the ubiquitous CH4 oversaturation observed in most lakes can be explained through the interaction between horizontal transport of littoral CH4, air–water gas exchange and the balance between epilimnetic CH4 oxidation and production.  相似文献   

17.
Thiols are important antioxidants that can modulate the bioavailability and biogeochemistry of many soft metals, although their detection remains challenging in both their reduced (R–S) and oxidized (R–S–S–R) forms. Here, a modified biochemical method was applied to determine the levels of dissolved and particulate thiols in Lake Biwa water and extracted Lake Biwa fulvic acids obtained at various depths. This method involves the use of the reducing agent tris(2-carboxyethyl)phosphine and the fluorescent label 7-fluorobenzofurazan-4-sulfonic acid ammonium salt (SBD-F), followed by solid-phase extraction and HPLC with fluorescence detection. Dissolved cysteine (Cys) (2.0–6.0 nM), glutathione (GSH) (2.8–5.1 nM), and N-acetyl-l-cysteine (NAC) (1.6–4.2 nM) were detected throughout the water column but were broadly consistent at depths of 5–20 m. In contrast, abundant levels of particulate cysteine (1.3–3.5?×?102 nM) and glutathione (1.6–3.1?×?102 nM) were detected down to depths of 15 m. The particulate cysteine and glutathione were significantly covariant, and the ratios between them reflected the differences in the plankton community composition and availability of these compounds. This work also studied the concentrations of Cys, GSH and NAC in Lake Biwa fulvic acids (LBFAs) for the first time (at 0 m: cysteine, 0.8 nM; glutathione, 1.6 nM; NAC, 2.5 nM; at 10 m: cysteine, 1.4 nM; glutathione, 0.6 nM; NAC, 1.6 nM). The nanomolar to sub-nanomolar concentrations of the particulate and dissolved Cys, GSH and NAC in the lake indicates that these are an important class of ligands for chalcophile metals and may influence the distribution of plankton communities from the epilimnion to the hypolimnion of the lake.  相似文献   

18.
19.
This study estimated the inputs of four paddy herbicides in the entire river inflow reaching Lake Biwa, the largest lake in Japan, which serves as a water resource for 14 million people. The Uso River and the Hino River, the main contaminated rivers among the inflow rivers, were selected as daily and hourly monitoring sites to provide data on the seasonal trends in the concentration and load of herbicides and to determine the effect of rainfall events on load. The monitoring was also performed four times in 15 inflow rivers. The total input to the lake was calculated from the loads during fine weather conditions and additional loads during rainfall events. The former based on the lumped load from the two rivers and by prorating for the 15 rivers, and the latter was estimated from the relation between precipitation and increased load rate. The annual losses of herbicide from the basin to Lake Biwa were estimated to be 14.5% for bromobutide, 3.0% for pretilachlor, 5.2% for molinate, and 8.8% for simetryn. The loads caused by rainfall events accounted for 9%–18% of the total annual loads.  相似文献   

20.
Greenhouse gas emissions of Lake Neusiedl, the westernmost European shallow steppe lake, were analysed to identify differences between the seasons of the years and between different locations in the pelagic zone and reed belt. Emissions of CO2, CH4 and N2O were measured in gas samples that had been recovered from the gas space of floating chambers operated as closed systems. Sampling periods covered all seasons except winter. Scaled up to the whole lake area (320 km2), the diffusive emissions of spring, summer and autumn totalled to about 79,500 t CO2e, disregarding bubble emissions, winter emissions and plant-mediated emissions. The emission sum consisted of about 57,000 t CO2, 760 t CH4, and 12 t N2O. Approximately one-third of the methane and carbon dioxide emissions originated in the pelagic zone and two-thirds in the reed belt (without plant emissions) whereas nitrous oxide emissions were similar in these two zones. An estimate of ebullitive emissions resulted in additional 1,765 t CH4 that predominantly originated in or near the reed belt from spring to autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号