首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of the nuclear protein cyclin (MW 36 000) and DNA in quiescent mouse fibroblasts is coordinately induced by serum and purified growth factors. Inhibition of DNA synthesis by hydroxyurea or aphidicolin in serum-stimulated quiescent cells does not affect the induction of cyclin. The levels of cyclin synthesis decrease rapidly at the end of the S phase. Immunofluorescence studies reveal that there are dramatic changes in the nuclear distribution of cyclin during S phase and that these depend on DNA synthesis or events during S phase. These observations strengthen the notion that cyclin is an important component of the events leading to DNA replication.  相似文献   

2.
Inhibition of DNA synthesis and cell proliferation of mouse 3T3 cells by aphidicolin did not affect the expression of cyclin, a nuclear protein whose synthesis correlates with cell proliferation, as determined by quantitative two-dimensional gel electrophoresis analysis. Serum stimulation of quiescent 3T3 cells revealed that cyclin synthesis increases shortly before DNA synthesis. Inhibition of DNA synthesis by aphidicolin in serum-stimulated quiescent cells did not affect the increase of cyclin following stimulation. These results demonstrate that cyclin synthesis is not coupled to DNA synthesis and that it is one of the latest events before DNA replication.  相似文献   

3.
Some of the important controlling events regulating eukaryotic S-phase progression are considered to occur late in the G1 stage of the cell cycle. We show here that stimulation of DNA synthesis in bone marrow-derived macrophages (BMM) by macrophage CSF-1 is preceded by G1 expression of three genes which encode proteins associated with the DNA synthesis machinery--the M1 and M2 subunits of ribonucleotide reductase and proliferating cell nuclear Ag (PCNA). Increased expression for these genes correlated well with the mitogenic response and sustained expression required de novo RNA and protein synthesis and also the presence of CSF-1 for at least most of G1. Inhibitors of BMM proliferation (LPS, TNF-alpha, IFN-gamma, and cAMP elevating agents) suppressed CSF-1-induced expression of M1, M2, and PCNA mRNA measured at 22 h. This suppression occurred even when added up to 12 h after the CSF-1, a period coinciding with the G1/S-phase boundary. The delayed kinetics of this effect parallels the ability of these agents to maximally inhibit CSF-1-induced BMM DNA synthesis when added at similar times. Decreased expression of M1, M2, and PCNA was not merely a consequence of DNA synthesis inhibition because the S-phase inhibitor, hydroxyurea, did not suppress CSF-1-induced gene expression. These results suggest that inhibition of DNA synthesis by antiproliferative agents involves inhibition of expression of several genes associated with the DNA synthesis machinery.  相似文献   

4.
J E Celis  P Madsen 《FEBS letters》1986,209(2):277-283
PCNA autoantibodies specific for cyclin/PCNA were used to determine the nuclear distribution of this protein in transformed human amnion cells (AMA) irradiated with ultraviolet light (254 nm) under conditions that induced nucleotide excision DNA repair synthesis. The results showed a striking increase in nuclear cyclin/PCNA antigen staining of non S-phase cells that was not abolished by cycloheximide (20 micrograms/ml, added 2 h before irradiation), and that is most likely due to a redistribution of pre-existing cyclin. These observations raise the possibility that cyclin/PCNA may play a role in nucleotide excision DNA repair synthesis in addition to its putative role in replicative DNA synthesis.  相似文献   

5.
Human cytomegalovirus infection inhibits G1/S transition.   总被引:5,自引:1,他引:4       下载免费PDF全文
Cell cycle progression during cytomegalovirus infection was investigated by fluorescence-activated cell sorter (FACS) analysis of the DNA content in growth-arrested as well as serum-stimulated human fibroblasts. Virus-infected cells maintained in either low (0.2%) or high (10%) serum failed to progress into S phase and failed to divide. DNA content analysis in the presence of G1/S (hydroxyurea and mimosine) and G2/M (nocodazole and colcemid) inhibitors demonstrated that upon virus infection of quiescent (G0) cells, the cell cycle did not progress beyond the G1/S border even after serum stimulation. Proteins which normally indicate G1/S transition (proliferating cell nuclear antigen [PCNA]) or G2/M transition (cyclin B1) were elevated by virus infection. PCNA levels were induced in infected cells and exhibited a punctate pattern of nuclear staining instead of the diffuse pattern observed in mock-infected cells. Cyclin B1 was induced in infected cells which exhibited a G1/S DNA content by FACS analysis, suggesting that expression of this key cell cycle function was dramatically altered by viral functions. These data demonstrate that contrary to expectations, cytomegalovirus inhibits normal cell cycle progression. The host cell is blocked prior to S phase to provide a favorable environment for viral replication.  相似文献   

6.
UV irradiation of quiescent human fibroblasts immediately triggers the appearance of the nuclear protein cyclin/proliferating cell nuclear antigen (PCNA) as detected by indirect immunofluorescent staining after methanol fixation. This was found to be independent of new synthesis of cyclin/PCNA by two-dimensional gel analysis and cycloheximide treatment. The intensity of the immunofluorescent staining of cyclin/PCNA observed in UV-irradiated cells corresponded with the UV dose used and with the DNA repair synthesis detected by autoradiography. The nuclear staining remains as long as DNA repair activity is detected in the cells. By extracting the UV-irradiated quiescent cells with Triton X-100 and fixing with formaldehyde, it was possible to demonstrate by indirect immunofluorescence rapid changes in the cyclin/PCNA population after irradiation, a small proportion (5-10%) of which is tightly associated to the nucleus as determined by high salt extraction. By incubating at low temperature and depleting the ATP pools of the cells before UV irradiation, we have demonstrated that the changes in cyclin/PCNA distribution observed involve at least two different nuclear associations.  相似文献   

7.
The effect of serum and growth factors [platelet-derived growth factor (PDGF), fibroblast growth factor (FGF)] on the synthesis of the nuclear protein cyclin and its correlation with DNA synthesis has been studied in quiescent mouse 3T3 cells by means of quantitative two-dimensional gel electrophoresis. Serum must be present in the medium for at least 8-12 h to induce maximal synthesis of cyclin (6- to 7-fold increase compared with quiescent cells). The stimulation of cyclin synthesis is dose-dependent and correlates directly with DNA synthesis. In addition, partially purified PDGF and FGF also induce cyclin and DNA synthesis in a coordinate way. Both growth factors, like serum, exhibit a similar lag phase to induce maximal cyclin (6- to 7-fold) and DNA synthesis (90% of the cells). Pure PDGF at a concentration as low as 10 ng/ml has the same effect as 10% serum. The coordinate induction of cyclin and DNA synthesis can only be observed with growth factors that induce DNA synthesis. These results strengthen the notion that cyclin is an essential component of the events leading to DNA replication.  相似文献   

8.
Human cyclin/PCNA (proliferating cell nuclear antigen) is structurally, functionally, and immunologically homologous to the calf thymus auxiliary protein for DNA polymerase delta. This auxiliary protein has been investigated as a stimulatory factor for the nuclear DNA polymerases from S. cerevisiae. Calf cyclin/PCNA enhances by more than ten-fold the ability of DNA polymerase III to replicate templates with high template/primer ratios, e.g. poly(dA).oligo(dT) (40:1). The degree of stimulation increases with the template/primer ratio. At a high template/primer ratio, i.e. low primer density, cyclin/PCNA greatly increases processive DNA synthesis by DNA polymerase III. At low template/primer ratios (e.g. poly(dA).oligo(dT) (2.5:1), where addition of cyclin/PCNA only minimally increases the processivity of DNA polymerase III, a several-fold stimulation of total DNA synthesis is still observed. This indicates that cyclin/PCNA may also increase productive binding of DNA polymerase III to the template-primer and stabilize the template-primer-polymerase complex. The activity of yeast DNA polymerases I and II is not affected by addition of cyclin/PCNA. These results strengthen the hypothesis that yeast DNA polymerase III is functionally analogous to the mammalian DNA polymerase delta.  相似文献   

9.
10.
Proliferating cell nuclear antigen (PCNA) is expressed in the nuclei of proliferating cells, but is not detected in resting cells. The kinetics of PCNA expression suggest that it is associated with a phase preceding active DNA synthesis. DNA synthesis is under cytoplasmic control, and there is a cytoplasmic protein, ADR (activator of DNA replication), that induces DNA synthesis in isolated quiescent nuclei. We now report that a human antibody preparation monospecific for PCNA, but not two monoclonal antibodies directed against different epitopes on PCNA, can inhibit the ability of ADR to induce DNA synthesis in isolated quiescent nuclei. This effect is not due to inhibition of DNA polymerase alpha activity. Thus, the anti-PCNA antibody exerts its effect either by directly influencing the initial interaction of ADR with the nucleus, or by inhibiting subsequent synthetic events.  相似文献   

11.
Evidence is presented that association of proliferating cell nuclear antigen (PCNA) with nuclear chromatin in human fibroblasts is related to the phosphorylation status of the protein. Using a hypotonic lysis procedure to extract the soluble form of PCNA, it has been shown that the remaining nuclear-bound form, predominantly in S-phase cells, is highly phosphorylated. Cells in early G1, or in G2 + M phases, contain basal levels of the bound form of the protein that is only weakly phosphorylated. Using fractionated immunoprecipitation techniques, PCNA was found to be associated with cyclin A in both soluble and insoluble fractions. In contrast, association of PCNA with cyclin D1 was found in the soluble fraction, while no detectable levels were present in the insoluble fraction. Immunofluorescence labeling and flow cytometric analysis of the cell cycle distribution of cyclin D1 and cyclin A showed that, like PCNA, maximal levels of both proteins were bound to nuclear structures at the G1/S phase boundary. These results suggest that binding of PCNA to DNA synthesis sites occurs after phosphorylation. Association with cyclin D1 and cyclin A might occur in a macromolecular complex assembled at the G1/S phase boundary to drive activation of DNA replication factors.  相似文献   

12.
13.
《The Journal of cell biology》1989,109(4):1399-1410
Human autoimmune sera specific for proliferating cell nuclear antigen (PCNA)/cyclin (auxiliary protein for DNA polymerase delta) demonstrated the presence of epitopes within the macro- and micronuclei of the hypotrichous ciliated protozoa Euplotes eurystomus. Tightly bound PCNA/cyclin was localized at the site of DNA synthesis in macronuclei, the rear zone of the replication band. Starvation or heat shock, conditions that reduce macronuclear replication, resulted in a decrease of PCNA/cyclin in replication bands. Micronuclei also exhibited PCNA/cyclin localization which persisted for a large proportion of the vegetative cell cycle and exhibited significant resistance to adverse culture conditions. Immunoprecipitation of 35S-labeled soluble Euplotes proteins with PCNA/cyclin autoimmune sera revealed a spectrum of low molecular mass proteins. PCNA/cyclin-like proteins have now been observed in the widely divergent species: human, rat, amphibian, yeast, and ciliated protozoa.  相似文献   

14.
v-Jun accelerates G(1) progression and shares the capacity of the Myc, E2F, and E1A oncoproteins to sustain S-phase entry in the absence of mitogens; however, how it does so is unknown. To gain insight into the mechanism, we investigated how v-Jun affects mitogen-dependent processes which control the G(1)/S transition. We show that v-Jun enables cells to express cyclin A and cyclin A-cdk2 kinase activity in the absence of growth factors and that deregulation of cdk2 is required for S-phase entry. Cyclin A expression is repressed in quiescent cells by E2F acting in conjunction with its pocket protein partners Rb, p107, and p130; however, v-Jun overrides this control, causing phosphorylated Rb and proliferation-specific E2F-p107 complexes to persist after mitogen withdrawal. Dephosphorylation of Rb and destruction of cyclin A nevertheless occur normally at mitosis, indicating that v-Jun enables cells to rephosphorylate Rb and reaccumulate cyclin A without exogenous mitogenic stimulation each time the mitotic "clock" is reset. D-cyclin-cdk activity is required for Rb phosphorylation in v-Jun-transformed cells, since ectopic expression of the cdk4- and cdk6-specific inhibitor p16(INK4A) inhibits both DNA synthesis and cell proliferation. Despite this, v-Jun does not stimulate D-cyclin-cdk activity but does induce a marked deregulation of cyclin E-cdk2. In particular, hormonal activation of a conditional v-Jun-estrogen receptor fusion protein in quiescent, growth factor-deprived cells stimulates cyclin E-cdk2 activity and triggers Rb phosphorylation and DNA synthesis. Thus, v-Jun overrides the mitogen dependence of S-phase entry by deregulating Rb phosphorylation, E2F-pocket protein interactions, and ultimately cyclin A-cdk2 activity. This is the first report, however, that cyclin E-cdk2, rather than D-cyclin-cdk, is likely to be the critical Rb kinase target of v-Jun.  相似文献   

15.
We determined the expression and subcellular localization of nuclear protein NP95 during the cell cycle in mouse 3T3 cells. The levels of NP95 mRNA and protein were extremely low in quiescent cells; however, stimulation with 10% serum increased their expressions in a time course similar to that of the late growth-regulated gene proliferating cell nuclear antigen (PCNA). Subnuclear location of NP95 dynamically changed during the cell cycle. Double immunostaining for NP95 and chromatin-bound PCNA, a marker of DNA replication sites, revealed that NP95 was almost exclusively colocalized with chromatin-bound PCNA throughout the nucleus in early S phase and partly in mid-S phase. Distinct localization of the two proteins, however, became evident in mid-S phase, and thereafter, many chromatin-bound PCNA foci not carrying NP95 foci could be detected. In G2 phase, nodular NP95 foci were still identified without any chromatin-bound PCNA foci. Chromatin-bound PCNA was observed as a pre-DNA replication complex at the G1/S boundary synchronized by hydroxyurea treatment, while NP95 was detected in nucleolar regions as unique large foci. There was no significant redistribution of NP95 foci shortly after DNA damage by gamma-irradiation. Nodular NP95 foci characteristically seen in G2 phase were also detected in G2-arrested cells following gamma-irradiation. Taken together, our results indicate that NP95 is assigned to a late growth-regulated gene and suggest that NP95 does not take a direct part in DNA replication as part of the DNA synthesizing machinery, like PCNA, but is presumably involved in other DNA replication-linked nuclear events.  相似文献   

16.
The sequence of cyclin (proliferating cell nuclear antigen, PCNA), antigen staining throughout the cell cycle of African green monkey kidney cells (BS-C-1) has been determined by indirect immunofluorescence using PCNA autoantibodies specific for this protein. Patterns of cyclin staining observed between the beginning of S-phase and maximum DNA synthesis are similar to those reported in human AMA cells [(1985) Proc. Natl. Acad. Sci. USA 82, 3262-3266], while those detected thereafter are significantly different; the most striking feature being the continuous staining of the nucleoli up to or very near the S/G2 border of the cell cycle. Using [3H]thymidine autoradiography and indirect immunofluorescence of the same cells we show a remarkable correlation between cyclin antigen distribution and topographical patterns of DNA synthesis. In addition, we present evidence showing that DNase I treatment of Triton-extracted monolayers abolishes cyclin antigen staining but does not result in a substantial release of this protein. Taken together the above observations argue for a role of cyclin in some aspect of DNA replication.  相似文献   

17.
The synthesis of specific protein has been investigated in primary cultures of dog thyroid epithelial cells, which can be induced to progress into G1 phase, in the presence of insulin, by different types of mitogens: thyrotropin (TSH) acting through cyclic adenosine monophosphate (cAMP), epidermal growth factor (EGF), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or 10% serum. EGF, TPA, or serum specifically induce [35S] methionine labeling of protein 1 (Mr approximately 80,000). The effect of EGF on protein 1 labeling and DNA replication is dependent on insulin. The level of protein 1 labeling as well as that of DNA synthesis is higher when TSH or TSH + serum are added together with EGF. It peaks in mid-G1. TSH alone, in the presence of insulin, stimulates DNA replication without inducing protein 1 synthesis, which thus represents a cell-cycle-dependent event that is not obligatory in mitogenic activation through cyclic AMP. Among the eight proteins whose synthesis is stimulated by TSH, only the labeling of protein 7, molecular weight ratio (Mr approximately 38,000), correlates with the DNA synthetic activity of the cells. The present authors identified protein 7 as cyclin/proliferating cell nuclear antigen (PCNA), the auxiliary protein of DNA polymerase-delta. The effect of TSH on cyclin synthesis is already detectable when most of the cells are in late G1, but its stimulation by EGF or EGF + serum is delayed and detected only after extending the labeling period to the S-phase. These data support the view that the cAMP-mediated mitogenic pathway remains partly distinct from the better known pathways induced by growth factors and tumor promoters, even at late stages of the G1-phase.  相似文献   

18.
The p21(WAF1/CIP1/sdi1) gene product (WAF1) inhibits DNA replication in vitro (J. Chen, P. Jackson, M. Kirschner, and A. Dutta, Nature 374:386-388, 1995; S. Waga, G. Hannon, D. Beach, and B. Stillman, Nature 369:574-578, 1994), but in vivo studies on the antiproliferative activity of WAF1 have not resolved G1-phase arrest from potential inhibition of S-phase progression. Here, we demonstrate that elevated WAF1 expression can retard replicative DNA synthesis in vivo. The WAF1-mediated inhibitory effect could be antagonized by cyclin A, cyclin E, or the simian virus 40 small-t antigen with no decrease in the levels of WAF1 protein in transfected cells. Proliferating-cell nuclear antigen (PCNA) overexpression was neither necessary nor sufficient to antagonize WAF1 action. Expression of the N-terminal domain of WAF1, responsible for cyclin-dependent kinase (CDK) interaction, had the same effect as full-length WAF1, while the PCNA binding C terminus exhibited modest activity. We conclude that S-phase progression in mammalian cells is dependent on continuing cyclin and CDK activity and that WAF1 affects S phase primarily through cyclin- and CDK-dependent pathways.  相似文献   

19.
Proliferating cell nuclear antigen (PCNA/cyclin) is a nuclear protein that can stimulate purified DNA polymerase delta in vitro, and its synthesis correlates with the proliferation rate of cells. We have attempted to determine whether synthesis of PCNA/cyclin in Chinese hamster ovary cells is necessary to regulate entry into S phase. We have measured cellular PCNA/cyclin concentration of the mRNA or protein throughout the cell cycle. Cells were separated by centrifugal elutriation into populations enriched for G-1, S, and G-2/M phases. Quantitative Northern hybridization analysis was performed on RNA isolated from each cell population by using a cDNA clone of PCNA/cyclin as a probe. Results demonstrated that although intact PCNA/cyclin mRNA is present during all phases of the cell cycle, an induction of about 3-fold occurs during S phase. Two-parameter staining for PCNA/cyclin and DNA, and analysis by flow cytometry, confirmed that the quantity of PCNA/cyclin protein in the cells increases severalfold in G-1 or early S phase but generally is invariant in S and G-2/M phases. This cell cycle dependence of PCNA/cyclin expression suggests that the observed synthesis is a prerequisite for initiation of DNA replication. Introduction of an antisense oligonucleotide complementary to the PCNA/cyclin mRNA to inhibit PCNA/cyclin synthesis effectively prevented entry of G-1 phase cells into S phase. A complementary sense oligonucleotide used as a control did not have an inhibitory effect. This result suggests that a threshold concentration of PCNA/cyclin is necessary for entry into S phase.  相似文献   

20.
Numerous reports have shown that polyamines are required for cell proliferation. A current model for regulating commitment to DNA replication in cultured fibroblasts stimulated from quiescence by serum addition postulates sequential action by specific growth factors. To temporally localize polyamine-dependent steps within this defined sequence, mouse Balb/c-3T3 fibroblasts were partially depleted of polyamines by treatment with DL-alpha-difluoromethylornithine (DFMO), next rendered quiescent by serum deprivation, then stimulated by 10% serum with or without exogenous putrescine (Pu). Depletion of polyamines was verified by HPLC, and entry of cells into S phase was monitored by autoradiography. After 24 h of incubation with [3H]-thymidine, polyamine-depleted cells had labeling indices similar to quiescent cells if they were serum-stimulated without Pu, but progressed to S phase to the same degree as control cultures if polyamines were restored by adding Pu at the time of serum stimulation. These observations suggested that commitment of quiescent cells to DNA replication may require polyamines. To determine if polyamine-dependent steps occur during the pre-commitment period (up to 12 h after serum stimulation) or only in traverse of G1 (12 h to 24 h, post-commitment), polyamine-depleted quiescent cells were serum-stimulated for 12 h without Pu, then returned to low serum with Pu. Labeling indices of these cultures remained nearly as low as those of unstimulated cells. Reducing serum concentration from 10% to 0.5% at 12 h after stimulation did not effect labeling indices of control cells not depleted of polyamines by DFMO. These results supported the postulated requirement for polyamines during pre-commitment events. However, polyamine-deficient quiescent cells serum-stimulated without Pu for periods longer than 24 h had labeling indices at 36 and 48 h significantly greater than at 24 h. This suggested that polyamine depletion may decrease the rate at which quiescent cells commit to DNA replication, rather than producing an absolute blockade during the pre-commitment period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号