首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 660 毫秒
1.
Although Au(I) complexes have been used to treat rheumatoid arthritis for over 75 years, their mechanism of action is still poorly understood. A family of enzymes responsible for joint destruction in rheumatoid arthritis, the cathepsins, has been discussed as a possible biological target of Au(I). In this study, inhibition of the cathepsins by known Au(I) drugs and related compounds was investigated. The compounds tested inhibited cathepsin activity with IC50 values as low as 600 nM. More typical IC50 values were in the 50-200 microM range. Although the gold complexes are not extremely potent cathepsin inhibitors, it is likely that this inhibition is biologically relevant given the high concentrations of Au(I) in the serum and joints of patients undergoing chrysotherapy. While it is likely that there are multiple targets of Au(I) in vivo, inhibition of the cathepsins would provide protection against the joint destruction that is a hallmark of rheumatoid arthritis and is one possible mechanism for Au(I) antiarthritic activity.  相似文献   

2.
Marine Sponges as Pharmacy   总被引:2,自引:0,他引:2  
Marine sponges have been considered as a gold mine during the past 50 years, with respect to the diversity of their secondary metabolites. The biological effects of new metabolites from sponges have been reported in hundreds of scientific papers, and they are reviewed here. Sponges have the potential to provide future drugs against important diseases, such as cancer, a range of viral diseases, malaria, and inflammations. Although the molecular mode of action of most metabolites is still unclear, for a substantial number of compounds the mechanisms by which they interfere with the pathogenesis of a wide range of diseases have been reported. This knowledge is one of the key factors necessary to transform bioactive compounds into medicines. Sponges produce a plethora of chemical compounds with widely varying carbon skeletons, which have been found to interfere with pathogenesis at many different points. The fact that a particular disease can be fought at different points increases the chance of developing selective drugs for specific targets.  相似文献   

3.
传统上,细胞死亡分为凋亡和坏死两类。而近年来越来越多的研究表明坏死性凋亡是一种不同于凋亡和坏死的新型细胞死亡途径,在多种疾病模型中发挥着重要作用。本文对坏死性凋亡的产生机制、坏死性凋亡同凋亡和坏死的区别及其在疾病和药物靶点发现中的作用进行综述,以利于加深对不同细胞死亡方式的认识并促进相关新药的研发。  相似文献   

4.
Gold(I) compounds have been used in the treatment of rheumatoid arthritis for over 80 years, but the biological targets and the structure–activity relationships of these drugs are not well understood. Of particular interest is the molecular mechanism behind the antiarthritic activity of the orally available drug triethylphosphine(2,3,4,6-tetra-O-acetyl-β-1-d-thiopyranosato-S) gold(I) (auranofin, Ridaura). The cathepsin family of lysosomal, cysteine-dependent enzymes is an attractive biological target of Au(I) and is inhibited by auranofin and auranofin analogs with reasonable potency. Here we employ a combination of experimental and computational investigations into the effect of changes in the phosphine ligand of auranofin on its in vitro inhibition of cathepsin B. Sequential replacement of the ethyl substituents of triethylphosphine by phenyl groups leads to increasing potency in the resultant Au(I) complexes, due in large part to favorable interactions of the more sterically bulky Au(I)–PR3 fragments with the enzyme active site.  相似文献   

5.
6.
Gold(III) compounds have been examined for potential anti-cancer activity. It is proposed that the molecular targets of these compounds are thiol-containing biological molecules such as the cathepsin cysteine proteases. These enzymes have been implicated in many diseases including cancer. The catalytic mechanism of the cathepsin cysteine proteases is dependent upon a cysteine at the active site which is accessible to the interaction of thiophilic metals such as gold. The synthesis and biological activity of square-planar six-membered cycloaurated Au(III) compounds with a pyridinyl-phenyl linked backbone and two monodentate or one bidentate leaving group is described. Gold(III) cycloaurated compounds were able to inhibit both cathepsins B and K. Structure/activity was investigated by modifications to the pyridinyl-phenyl backbone, and leaving groups. Optimal activity was seen with substitution at the 6 position of the pyridine ring. The reversibility of inhibition was tested by reactivation in the presence of cysteine with a bidentate thiosalicylate compound being an irreversible inhibitor. Five compounds were evaluated for in vitro cytotoxicity against a panel of human tumor cell lines. The thiosalicylate compound was tested in vivo against the HT29 human colon tumor xenograft model. A modest decrease in tumor growth was observed compared with the untreated control tumor.  相似文献   

7.
The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug–disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity (i.e., SARS), comorbidity (e.g., cardiovascular diseases), or for their association to drugs tentatively repurposed to treat COVID-19 (e.g., malaria, HIV, rheumatoid arthritis). Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments (e.g., chloroquine, hydroxychloroquine, tocilizumab, heparin), as well as a new combination therapy of 5 drugs (hydroxychloroquine, chloroquine, lopinavir, ritonavir, remdesivir), actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies (e.g., anti-IFNγ, anti-TNFα, anti-IL12, anti-IL1β, anti-IL6), and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.  相似文献   

8.
G protein-coupled receptors represent the largest family of membrane receptors translating extracellular into intracellular signals. Endogenous ligands for these receptors range from physical stimuli (e.g., light and odorants) to ions and chemical transmitters, such as "classical" biogenic amines, nucleotides and peptides. Some of these receptors are pathologically altered in neurodegenerative and psychiatric diseases and indeed represent the target for a variety of already marketed psycho-active drugs. With the publication of the human genome, it has become evident that there still are many "orphan" G protein-coupled receptors, i.e., receptors responding to yet-unidentified endogenous ligands. A large amount of these receptors are expressed in nervous tissues, but, apart from their molecular structure, we have no information concerning their physiological roles and alterations in disease states. In this review, we summarise the advancements and pitfalls of the strategies that have been exploited in recent years to "deorphanise" some of these receptors. We also show how, in some cases, this deorphanisation process has resulted in the identification of new potential targets for drug development as well as in the discovery of previously unknown neurotransmitters, including bioactive peptides and substances that had been merely known as metabolic intermediates. We envisage that the deorphanisation of the remaining orphan G protein-coupled receptors will further advance our knowledge of nervous system pathophysiology and unveil additional targets for new therapeutic approaches to human diseases, including psychosis, depression, anxiety, pain and aging-associated neurodegenerative disorders.  相似文献   

9.
10.
Those pharmaceutical companies whose goal is to generate novel innovative drugs are faced with the challenge that only a fraction of the compounds tested in clinical trials eventually become a registered drug. This problem of attrition is compounded by the fact that the clinical trial or development stage is by far the most costly phase of bringing a new drug to market, consuming around 80 per cent of the total spend. Transgenic technology represents an attractive approach to reducing the attrition rate of compounds entering clinical trials by increasing the quality of the target and compound combinations making the transition from discovery into development. Transgenic technology can impact at many points in the discovery process, including target identification and target validation, and provides models designed to alert researchers early to potential problems with drug metabolism and toxicity, as well as providing better models for human diseases. In target identification, transgenic animals harbouring large DNA fragments can be used to narrow down genetic regions. Genetic studies often result in the identification of large genomic regions and one way to decrease the region size is to do complementation studies in transgenic animals using, for example, inserts from bacterial artificial chromosome (BAC) clones. In target validation, transgenic animals can be used for in vivo validation of a specific target. Considerable efforts are being made to establish new, rapid and robust tools with general utility for in vivo validation, but, so far, only transgenic animals work reliably on a wide range of targets. Transgenic animals can also be used to generate better disease models. Predictive animal models to test new compounds and targets will significantly speed up the drug discovery process and, more importantly, increase the quality of the compounds taken further in the research and development process. Humanised transgenic animals harbouring the human target molecule can be used to understand the effect of a compound acting on the human target in vivo. Also, models mimicking human drug metabolism will provide a means of assessing the effect of human-specific metabolites and of understanding the pharmacokinetic properties of potential drugs. In toxicology studies, transgenic animals are providing more predictive models. A good example of this are those models routinely used to look for carcinogenicity associated with new compounds.  相似文献   

11.
Two dinuclear oxo-bridged organogold(III) compounds, namely [(N,N,C)(2)Au(2)(μ-O)][PF(6)](2) (with N,N,CH = 6-(1-methylbenzyl)-2,2'-bipyridine, Au(2)O1; or 6-(1,1-dimethylbenzyl)-2,2'-bipyridine, Au(2)O2), were previously prepared and characterised. Their solution chemistry under physiological-like conditions has been investigated here as well as their in vitro antiproliferative properties. Notably, these compounds reveal a marked redox stability even in the presence of effective biological reductants such as ascorbic acid and glutathione. The two dinuclear gold(iii) compounds were evaluated for cytotoxic actions against a representative panel of 12 human tumor cell lines, in comparison to respective mononuclear parent compounds [(N,N,C)AuOH][PF(6)], and appreciable biological activity could be highlighted. The reactions of Au(2)O1 and Au(2)O2 with a few model proteins were studied and the ability to form metallodrug-protein adducts monitored through ESI MS methods. Typical adducts were identified where the protein is associated to monometallic gold fragments; in these adducts gold remains in the oxidation state +3 and conserves its organic ligand. A direct comparison of the biological profiles of these binuclear organogold(III) compounds with those previously reported for a series of dinuclear oxo-bridged complexes [(N,N)(2)Au(2)(μ-O)(2)][PF(6)](2) (N,N = 6(6')-substituted 2,2'-bipyridines) named Auoxo's was carried out. It emerges that the greater cytotoxicity of the latter is mainly due to the greater oxidising power of their gold(III) centres and to propensity to generate gold(i) species; in contrast, the here described bimetallic organogold(III) complexes manifest a far higher redox stability in the biological milieu coupled to lower, but still significant, antiproliferative properties. Different molecular mechanisms are thus hypothesised for these two classes of dinuclear gold(III) agents.  相似文献   

12.
The effects of gold(I) complexes (auranofin, triethylphosphine gold and aurothiomalate), gold(III) complexes ([Au(2,2'-diethylendiamine)Cl]Cl(2), [(Au(2-(1,1-dimethylbenzyl)-pyridine) (CH(3)COO)(2)], [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine)(OH)](PF(6)), [Au(bipy(dmb)-H)(2,6-xylidine)](PF(6))), metal ions (zinc and cadmium acetate) and metal complexes (cisplatin, zinc pyrithione and tributyltin) on mitochondrial thioredoxin reductase and mitochondrial functions have been examined. Both gold(I) and gold(III) complexes are extremely efficient inhibitors of thioredoxin reductase showing IC(50) ranging from 0.020 to 1.42 microM while metal ions and complexes not containing gold are less effective, exhibiting IC(50) going from 11.8 to 76.0 microM. At variance with thioredoxin reductase, auranofin is completely ineffective in inhibiting glutathione peroxidase and glutathione reductase, while gold(III) compounds show some effect on glutathione peroxidase. The mitochondrial respiratory chain is scarcely affected by gold compounds while the other metal complexes and metal ions, in particular zinc ion and zinc pyrithione, show a more marked inhibitory effect that is reflected on a rapid induction of membrane potential decrease that precedes swelling. Therefore, differently from gold compounds, the various metal ions and metal complexes exert their effect on different targets indicating a lower specificity. It is concluded that gold compounds are highly specific inhibitors of mitochondrial thioredoxin reductase and this action influences other functions such as membrane permeability properties. Metal ions and metal complexes markedly inhibit the activity of thioredoxin reductase although to an extent lower than that of gold compounds. They also inhibit mitochondrial respiration, decrease membrane potential and, finally, induce swelling.  相似文献   

13.
A significant challenge in the field of medicinal inorganic chemistry is the identification of biological targets of metal-based drugs and the characterization of the metal–biomolecule adducts. A classic example is Au(I), which has long been used to treat rheumatoid arthritis despite a poor understanding of its biological targets due to the lability, reactivity, and “spectroscopic silence” that are characteristic of Au(I). Here, we report two qualitative methods for characterizing Au(I)–protein adducts: a thiol-reactive probe that facilitates the identification of biological cysteine–Au(I) adducts and a photoreactive Au(I) complex that produces a covalent bond between the Au(I) complex and the biomolecule.  相似文献   

14.
Mitochondrial research is presently one of the fastest growing disciplines in biomedicine. Since the early 1990s, it has become increasingly evident that mitochondrial dysfunction contributes to a large variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Most remarkably, mitochondria, the "power house" of the cell, have also become accepted as the "motor of cell death" reflecting their recognized key role during apoptosis. Based on these recent exciting developments in mitochondrial research, increasing pharmacological efforts have been made leading to the emergence of "Mitochondrial Medicine" as a whole new field of biomedical research. The identification of molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will eventually launch a multitude of new therapies for the treatment of mitochondria-related diseases, which are based either on the selective protection, repair, or eradication of cells. Yet, while tremendous efforts are being undertaken to identify new mitochondrial drugs and drug targets, the development of mitochondria-specific drug carrier systems is lagging behind. To ensure a high efficiency of current and future mitochondrial therapeutics, colloidal vectors, i.e., delivery systems, need to be developed able to selectively transport biologically active molecules to and into mitochondria within living human cells. Here we review ongoing efforts in our laboratory directed toward the development of different phospholipid- and non-phospholipid-based mitochondriotropic drug carrier systems.  相似文献   

15.
From 81 volunteers (16 without dental restorations, 65 with gold crowns or inlays) samples of saliva before and after chewing gum, blood, serum, urine and faeces were taken and analysed for gold (Au) and palladium (Pd). The Au concentration in all analysed biomonitors correlates significantly to the number of teeth with gold restorations. For Pd the correlations were still significant, but weaker than for Au. Persons with gold restorations show maximal Au and Pd concentrations, 10(2)-10(3) higher than the background burden. The calculated maximal daily Au load in saliva (1.38 mg Au per day) reaches the range of an oral Au therapy for rheumatoid arthritis with 6 mg Auranofin (= 1.74 mg Au per day). During this therapy severe and frequent side effects are reported. In contrast, the Au concentration in serum maximally reached from Au restorations, amounts to only approximately 1/20 of the Au level during arthritis therapy. But even under subtherapeutic doses of 1 mg Auranofin/day severe side effects have been reported (4 out of 56 cases). The mean Au blood concentration from 1 mg Auranofin daily was only 3 times higher than our maximum value. A toxicological classification of the Pd values is difficult, because no toxicological threshold limit has been established, especially for the low-level long-term burden with Pd.  相似文献   

16.
Mitochondrial research is presently one of the fastest growing disciplines in biomedicine. Since the early 1990s, it has become increasingly evident that mitochondrial dysfunction contributes to a large variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Most remarkably, mitochondria, the “power house” of the cell, have also become accepted as the “motor of cell death” reflecting their recognized key role during apoptosis. Based on these recent exciting developments in mitochondrial research, increasing pharmacological efforts have been made leading to the emergence of “Mitochondrial Medicine” as a whole new field of biomedical research. The identification of molecular mitochondrial drug targets in combination with the development of methods for selectively delivering biologically active molecules to the site of mitochondria will eventually launch a multitude of new therapies for the treatment of mitochondria-related diseases, which are based either on the selective protection, repair, or eradication of cells. Yet, while tremendous efforts are being undertaken to identify new mitochondrial drugs and drug targets, the development of mitochondria-specific drug carrier systems is lagging behind. To ensure a high efficiency of current and future mitochondrial therapeutics, colloidal vectors, i.e., delivery systems, need to be developed able to selectively transport biologically active molecules to and into mitochondria within living human cells. Here we review ongoing efforts in our laboratory directed toward the development of different phospholipid- and non-phospholipid-based mitochondriotropic drug carrier systems.  相似文献   

17.
Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.  相似文献   

18.
Gold compounds form a new class of promising metal-based drugs with a number of potential therapeutic applications, particularly in the fields of anticancer and antimicrobial treatments. Previous research revealed that a group of structurally diverse gold compounds cause conspicuous inhibition of the protease activities of the human proteasome. Given the pharmacological importance of protease inhibition, the present study further explored whether these gold compounds might inhibit a few other proteases that are accepted druggable targets for disease treatment. In particular, four distinct cysteine proteases were considered here: cathepsin B and L that play a primary role in tumor-cell invasion and metastasis; rhodesain, the major cathepsin L-like cysteine protease of Trypanosoma brucei rhodesiense and CPB2.8ΔCTE, a Leishmania mexicana mature cysteine protease. Based on the encouraging results obtained for some of the tested gold compounds on the two parasitic cysteine proteases, especially against CPB2.8ΔCTE, with IC50s in the micromolar range, we next evaluated whether those gold compounds might contrast effectively the growth of the respective protozoa and indeed important antiprotozoal properties were disclosed; on the other hand a certain lack of selectivity was highlighted. Also, no direct or clear correlation could be established between the in vitro antiprotozoal properties and the level of protease inhibition. The implications of these results are discussed in relation to possible pharmaceutical applications.  相似文献   

19.
20.
Gold(I) phosphine complexes, such as [Au(d2pype)(2)]Cl, (1, where d2pype is 1,2-bis(di-2-pyridyl phosphinoethane)), belong to a class of promising chemotherapeutic candidates that have been shown to be selectively toxic to tumourigenic cells, and may act via uptake into tumour cell mitochondria. For a more holistic understanding of their mechanism of action, a deeper knowledge of their subcellular distribution is required, but to date this has been limited by a lack of suitable imaging techniques. In this study the subcellular distribution of gold was visualised in situ in human breast cancer cells treated with 1, using nano-scale secondary ion mass spectrometry. NanoSIMS ion maps of (12)C(14)N(-), (31)P(-), (34)S(-) and (197)Au(-) allowed, for the first time, visualisation of cellular morphology simultaneously with subcellular distribution of gold. Energy filtered transmission electron microscopy (EFTEM) element maps for gold were also obtained, allowing for observation of nuclear and mitochondrial morphology with excellent spatial resolution, and gold element maps comparable to the data obtained with NanoSIMS. Following 2 h treatment with 1, the subcellular distribution of gold was associated with sulfur-rich regions in the nucleus and cytoplasm, supporting the growing evidence for the the mechanism of action of Au(I) compounds based on inhibition of thiol-containing protein families, such as the thioredoxin system. The combination of NanoSIMS and EFTEM has broader applicability for studying the subcellular distribution of other types of metal-based drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号