首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cloning and expression of a cDNA encoding mouse indoleamine 2,3-dioxygenase   总被引:4,自引:0,他引:4  
A Habara-Ohkubo  O Takikawa  R Yoshida 《Gene》1991,105(2):221-227
The depletion of an essential amino acid (aa), tryptophan, caused by interferon-gamma (IFN-gamma)-mediated induction of indoleamine 2,3-dioxygenase (IDO) in mouse allografted tumor cells, has been suggested as a reason for the allograft rejection. To elucidate the mechanism of this IDO induction, attempts were made to isolate cDNA clones encoding mouse IDO. In seven of 25 mouse cell lines, IDO was induced by IFN-gamma, and the highest IDO induction was observed in the case of rectal cancer (CMT-93) cells, which were further stimulated two- to threefold by the simultaneous addition of dibutyryl cyclic AMP (Bt2cAMP). A cDNA library was prepared from poly(A)+ RNA isolated from CMT-93 cells treated with IFN-gamma/Bt2cAMP. The cDNA clones were isolated using the cDNA encoding human IDO as a probe. The mouse IDO cDNA encodes a 407-aa protein with an Mr of 45,639. The deduced aa sequence agreed with partial aa sequences derived from endopeptidase digestion of purified mouse IDO and revealed 61% homology with that of human IDO. Transient expression of the mouse IDO cDNA in COS-7 cells yielded a high level of IDO activity in the cells. Northern hybridization analysis of RNA in CMT-93 cells indicated that IFN-gamma induced the IDO mRNA, and that the level of RNA was increased by simultaneous addition of Bt2cAMP, while Bt2cAMP itself had no effect on mRNA induction.  相似文献   

2.
The hemoprotein indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. It has received considerable attention in recent years, particularly due to its role in the pathogenesis of many diseases. Here, we report attempts to improve soluble expression and purification of hexahistidyl-tagged recombinant human IDO from Escherichia coli (EC538, pREP4, and pQE9-IDO). Significant formation of inclusion bodies was noted at the growth temperature of 37 degrees C, with reduced formation at 30 degrees C. The addition of the natural biosynthetic precursor of protoporphrin IX, delta-aminolevulinic acid (ALA), coupled with optimisation of IPTG induction levels during expression at 30 degrees C and purification by nickel-agarose and size exclusion chromatography, resulted in protein with 1 mol of heme/mol of protein and a specific activity of 160 micromol of kynurenine/h/mg of protein (both identical to native human IDO). The protein was homogeneous in terms of electrophoretic analysis. Yields of soluble protein (3-5 mg/L of bacterial culture) and heme content are greater than previously reported.  相似文献   

3.
4.
The critical role of the ferryl intermediate in catalyzing the oxygen chemistry of monooxygenases, oxidases, or peroxidases has been known for decades. In contrast, its involvement in heme-based dioxygenases, such as human indoleamine 2,3-dioxygenase (hIDO), was not recognized until recently. In this study, H(2)O(2) was used as a surrogate to generate the ferryl intermediate of hIDO. Spectroscopic data demonstrate that the ferryl species is capable of oxidizing azinobis(3-ethylbenzothiazoline-6-sulfonic acid) but not L-Trp. Kinetic studies reveal that the conversion of the ferric enzyme to the ferryl intermediate facilitates the L-Trp binding rate by >400-fold; conversely, L-Trp binding to the enzyme retards the peroxide reaction rate by ~9-fold, because of the significant elevation of the entropic barrier. The unfavorable entropic factor for the peroxide reaction highlights the scenario that the structure of hIDO is not optimized for utilizing H(2)O(2) as a co-substrate for oxidizing L-Trp. Titration studies show that the ferryl intermediate possesses two substrate-binding sites with a K(d) of 0.3 and 440 μM and that the electronic properties of the ferryl moiety are sensitive to the occupancy of the two substrate-binding sites. The implications of the data are discussed in the context of the structural and functional relationships of the enzyme.  相似文献   

5.
The heme enzyme indoleamine 2,3-dioxygenase (IDO) was found to oxidize NADH under aerobic conditions in the absence of other enzymes or reactants. This reaction led to the formation of the dioxygen adduct of IDO and supported the oxidation of Trp to N-formylkynurenine. Formation of the dioxygen adduct and oxidation of Trp were accelerated by the addition of small amounts of hydrogen peroxide, and both processes were inhibited in the presence of either superoxide dismutase or catalase. Anaerobic reaction of IDO with NADH proceeded only in the presence of a mediator (e.g. methylene blue) and resulted in formation of the ferrous form of the enzyme. We propose that trace amounts of peroxide previously proposed to occur in NADH solutions as well as solid NADH activate IDO and lead to aerobic formation of superoxide and the reactive dioxygen adduct of the enzyme.  相似文献   

6.
Yuasa HJ  Ushigoe A  Ball HJ 《Gene》2011,485(1):22-31
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD+). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD+, like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (Km, Vmax and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD+) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking the kynU gene suggests its IDO has a function similar to eukaryotic enzymes.  相似文献   

7.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

8.
The initial step in the l-kynurenine pathway is oxidation of l-tryptophan to N-formylkynurenine and is catalyzed by one of two heme enzymes, tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). Here, we address the role of the conserved active site Ser167 residue in human IDO (S167A and S167H variants), which is replaced with a histidine in other mammalian and bacterial TDO enzymes. Our kinetic and spectroscopic data for S167A indicate that this residue is not essential for O 2 or substrate binding, and we propose that hydrogen bond stabilization of the catalytic ferrous-oxy complex involves active site water molecules in IDO. The data for S167H show that the ferrous-oxy complex is dramatically destabilized in this variant, which is similar to the behavior observed in human TDO [Basran et al. (2008) Biochemistry 47, 4752-4760], and that this destabilization essentially destroys catalytic activity. New kinetic data for the wild-type enzyme also identify the ternary [enzyme-O 2-substrate] complex. The data reveal significant differences between the IDO and TDO enzymes, and the implications of these results are discussed in terms of our current understanding of IDO and TDO catalysis.  相似文献   

9.
The human immunodeficiency virus type 1-associated cognitive-motor disorder, including the AIDS dementia complex, is characterized by brain functional abnormalities that are associated with injury initiated by viral infection of the brain. Indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme in tryptophan catabolism in extrahepatic tissues, can lead to neurotoxicity through the generation of quinolinic acid and immunosuppression and can alter brain chemistry via depletion of tryptophan. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model of AIDS, we demonstrate that cells of the macrophage lineage are the main source for expression of IDO in the SIV-infected monkey brain. Animals with SIV encephalitis have the highest levels of IDO mRNA, and the level of IDO correlates with gamma interferon (IFN-gamma) and viral load levels. In vitro studies on mouse microglia reveal that IFN-gamma is the primary inducer of IDO expression. These findings demonstrate the link between IDO expression, IFN-gamma levels, and brain pathology signs observed in neuro-AIDS.  相似文献   

10.
Indoleamine 2,3-dioxygenase (IDO) reacts with either oxygen or superoxide and tryptophan (trp) or other indoleamines while tryptophan 2,3-dioxygenase (TDO) reacts with oxygen and is specific for trp. These enzymes catalyze the rate-limiting step in the kynurenine (KYN) pathway from trp to quinolinic acid (QA) with TDO in kidney and liver and IDO in many tissues, including brain where it is low but inducible. QA, which does not cross the blood-brain barrier, is an excitotoxin found in the CNS during various pathologies and is associated with convulsions. We proposed that HBO-induced convulsions result from increased flux through the KYN pathway via oxygen stimulation of IDO. To test this, TDO and IDO of liver and brain, respectively, of Sprague Dawley rats were assayed with oxygen from 0 to 6.2 atm HBO. TDO activity was appreciable at even 30 microM oxygen and rose steeply to a maximum at 40 microM. Conversely, IDO had almost no detectable activity at or below 100 microM oxygen and maximum activity was not reached until about 1150 microM. (Plasma contains about 215 microM oxygen and capillaries about 20 microM oxygen when rats breathe air.) KYN was 60% higher in brains of HBO-convulsed rats compared to rats breathing air. While the oxygen concentration inside cells of rats breathing air or HBO is not known precisely, it is clear that the rate-limiting, IDO-catalyzed step in the brain KYN pathway (but not liver TDO) can be greatly accelerated in rats breathing HBO.  相似文献   

11.
12.
The antiproliferative action of human interferon (HuIFN)-gamma on human cells and the inhibition of intracellular pathogens, e.g. Toxoplasma gondii and Chlamydia psittaci, is at least in part due to an induction of indoleamine 2,3-dioxygenase (IDO) enzyme which degrades tryptophan, an essential amino acid. A cDNA clone (called C42) was isolated from a cDNA library made from poly(A)+ RNA obtained from HuIFN-gamma-treated human fibroblasts. Its nucleotide sequence revealed an open reading frame coding for a polypeptide of 403 amino acids, but no homology with any known gene in GenBank database was found. Evidence was obtained indicating that this cDNA codes for IDO: (i) Hybrid selected C42 specific poly(A)+ RNA from IFN-gamma-treated human cells coded for a polypeptide in vitro of approximately 42 kD (reported size of IDO, approximately 40 kD) which was immunoprecipitated by monoclonal anti-IDO antibody but not by a control antibody; and (ii) transfection of human fibroblasts with an expression plasmid containing C42 cDNA transcribed from chicken beta-actin promoter led to constitutive expression of C42 specific RNA as well as IDO activity. This cDNA clone will be useful in studying the role of IDO in the biological effects of IFN-gamma, and the regulation of IDO gene by IFN-gamma.  相似文献   

13.
Abstract

Increased kynurenine pathway metabolism has been implicated in the aetiology of the AIDS dementia complex (ADC). The rate limiting enzyme for this pathway is indoleamine 2,3- dioxygenase (IDO). We tested the efficacy of different strains of HIV-1 (HIV1-BaL, HIV1-JRFL and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain derived HIV-1 isolates, laboratory adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the high replicating macrophage tropic LA strain, HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day-8 post-infection. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent oxidative tryptophan catabolism in MDM.  相似文献   

14.
Increased kynurenine pathway metabolism has been implicated in the aetiology of the AIDS dementia complex (ADC). The rate limiting enzyme for this pathway is indoleamine 2,3-dioxygenase (IDO). We tested the efficacy of different strains of HIV-1 (HIV1-BaL, HIV1-JRFL and HIV1-631) to induce IDO in cultured human monocyte-derived macrophages (MDM). A significant increase in both IDO protein and kynurenine synthesis was observed after 48 h in MDM infected with the brain derived HIV-1 isolates, laboratory adapted (LA) HIV1-JRFL, and primary isolate HIV1-631. In contrast, almost no kynurenine production or IDO protein was evident in MDM infected with the high replicating macrophage tropic LA strain, HIV1-BaL. The induction of IDO and kynurenine synthesis by HIV1-JRFL and HIV1-631 declined to baseline levels by day-8 post-infection. Together, these results indicate that only selected strains of HIV-1 are capable of inducing IDO synthesis and subsequent oxidative tryptophan catabolism in MDM.  相似文献   

15.

Aims

Indoleamine 2,3-dioxygenase (IDO) inhibits T-cell proliferation by catalyzing the conversion of l-tryptophan to l-kynurenine. IDO-induced immune tolerance weakens the clinical outcomes of immunotherapies. Sodium butyrate (NaB), one of the histone deacetylase inhibitors (HDACIs), has potential anti-tumor effects. Our previous studies revealed that NaB could inhibit IFN-γ induced IDO expression in nasopharyngeal carcinoma cells, CNE2. In the present study, we aim to investigate to the mechanism of NaB interfering with the interferon-gamma (IFN-γ)-mediated IDO expression signaling transduction.

Main methods

IDO expression and STAT1 phosphorylation in CNE2 cells were analyzed by western blotting and STAT1 acetylation was evaluated by immunoprecipitation. STAT1 nuclear translocation and NF-κB activity were detected by transient transfection and reporter gene assay.

Key findings

We found that NaB inhibited IFN-γ-induced IDO expression in CNE2 cells via decreasing phosphorylation and nuclear translocation of STAT1, but not via down-regulation of IFN-γ-receptor (IFNGR). Immunoprecipitation assays revealed that NaB increased STAT1 acetylation. Furthermore, NaB elevated the activity of NF-κB in CNE2 cells, and blocking the NF-κB activity had no effect on the IFN-γ-induced IDO expression.

Significance

These results suggest that NaB inhibited IFN-γ-induced IDO expression via STAT1 increased acetylation, decreased phosphorylation, and reduced nuclear translocation. These provided new evidence for the anti-tumor action of NaB and potential drug targets to reduce the IDO-induced immune tolerance.  相似文献   

16.
The kynurenine pathway is responsible for the breakdown of the majority of the essential amino acid, tryptophan (Trp). The first and rate-limiting step of the kynurenine pathway can be independently catalysed by tryptophan 2,3-dioxygenase (Tdo2), indoleamine 2,3-dioxygenase 1 (Ido1) or indoleamine 2,3-dioxygenase 2 (Ido2). Tdo2 or Ido1 enzymatic activity has been implicated in a number of actions of the kynurenine pathway, including immune evasion by tumors. IDO2 is expressed in several human pancreatic cancer cell lines, suggesting it also may play a role in tumorigenesis. Although Ido2 was originally suggested to be a target of the chemotherapeutic agent dextro-1-methyl-tryptophan, subsequent studies suggest this compound does not inhibit Ido2 activity. The development of selective Ido2 inhibitors could provide valuable tools for investigating its activity in tumor development and normal physiology. In this study, a library of Food and Drug Administration-approved drugs was screened for inhibition of mouse Ido2 enzymatic activity. A number of candidates were identified and IC50 values of each compound for Ido1 and Ido2 were estimated. The Ido2 inhibitors were also tested for inhibition of Tdo2 activity. Our results showed that compounds from a class of drugs used to inhibit proton pumps were the most potent and selective Ido2 inhibitors identified in the library screen. These included tenatoprazole, which exhibited an IC50 value of 1.8 μM for Ido2 with no inhibition of Ido1 or Tdo2 activity detected at a concentration of 100 μM tenatoprazole. These highly-selective Ido2 inhibitors will be useful for defining the distinct biological roles of the three Trp-catabolizing enzymes.  相似文献   

17.

Aim

Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs.

Methods

Clinical-grade bone marrow–derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed.

Results

MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ–licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation.

Conclusion

A flow cytometry–based assay of MSCs post–IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process.  相似文献   

18.
The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.  相似文献   

19.
The discovery of a series of structurally-novel biaryl urea IDO inhibitors is described. Optimization of a micromolar hit through iterative cycles of synthesis and screening in an assay measuring IDO-mediated intracellular conversion of tryptophan to kynurenine led to potent inhibitors with favorable selectivity and metabolic stability profiles.  相似文献   

20.
Tryptophan catabolism initiated by the enzyme indoleamine 2,3-dioxygenase (IDO) has been postulated to be a natural regulatory mechanism for T cells. In this study, we generated a pig endothelial cell line expressing full-length human IDO (P-HuIDO) to serve as a simple model of a cellular xenogeneic graft. Splenocytes from mice primed to P-HuIDO cells were found to be as responsive to secondary stimulation as splenocytes from mice primed to parental cells. However, in T-cell proliferation assays using P-HuIDO cells as stimulators, a significant inhibition of both naive and memory xenogeneic proliferative responses was noted. Furthermore, the production of interferon-gamma and cytotoxic T lymphocyte function were also affected. When severe combined immunodeficiency mice were grafted with P-HuIDO cells, then challenged with primed splenocytes from BALB/c mice, cellular infiltration to the graft was delayed. Our findings suggest that transgenic expression of IDO in xenografts contributes to prolonged graft survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号