首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.  相似文献   

2.
We report in this work that Leptospira strains, virulent L. interrogans serovar Copenhageni, attenuated L. interrogans serovar Copenhageni and saprophytic L. biflexa serovar Patoc are capable of binding fibrinogen (Fg). The interaction of leptospires with Fg inhibits thrombin- induced fibrin clot formation that may affect the haemostatic equilibrium. Additionally, we show that plasminogen (PLG)/plasmin (PLA) generation on the surface of Leptospira causes degradation of human Fg. The data suggest that PLA-coated leptospires were capable to employ their proteolytic activity to decrease one substrate of the coagulation cascade. We also present six leptospiral adhesins and PLG- interacting proteins, rLIC12238, Lsa33, Lsa30, OmpL1, rLIC11360 and rLIC11975, as novel Fg-binding proteins. The recombinant proteins interact with Fg in a dose-dependent and saturable fashion when increasing protein concentration was set to react to a fix human Fg concentration. The calculated dissociation equilibrium constants (KD) of these reactions ranged from 733.3±276.8 to 128±89.9 nM for rLIC12238 and Lsa33, respectively. The interaction of recombinant proteins with human Fg resulted in inhibition of fibrin clot by thrombin-catalyzed reaction, suggesting that these versatile proteins could mediate Fg interaction in Leptospira. Our data reveal for the first time the inhibition of fibrin clot by Leptospira spp. and presents adhesins that could mediate these interactions. Decreasing fibrin clot would cause an imbalance of the coagulation cascade that may facilitate bleeding and help bacteria dissemination  相似文献   

3.

Background

Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin.

Methodology/Principal Findings

We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin.

Conclusions/Significance

PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.  相似文献   

4.
Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (Kd, 104±19 nM) and aortic elastin (Kd, 152±27 nM). It also binds fibrinogen (Kd, 244±15 nM), fibrinogen fragment D (Kd, 132±30 nM), plasma fibronectin (Kd, 359±68 nM), and murine laminin (Kd, 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.  相似文献   

5.
It has been reported previously that activation of vascular endothelium by outer membrane proteins of the spirochetes Borrelia sp. and Treponema sp. resulted in enhanced expression of endothelial cell adhesion molecules. To investigate the role of leptospiral proteins in this process, a predicted lipoprotein encoded by the gene LIC10365 was selected, which belongs to a paralogous family that presents a domain of unknown function, DUF1565. The LIC10365 gene was cloned and the protein expressed in Escherichia coli C43 (DE3) strain using the vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and was used to assess its ability to activate cultured human umbilical vein endothelial cells. The rLIC10365 activated endothelium in such a manner that E-selectin and intercellular adhesion molecule 1 (ICAM-1) became upregulated in a dose-dependent fashion. The LIC10365-encoded protein was identified in vivo in the renal tubules of animal during experimental infection with Leptospira interrogans. Collectively, these results implicate the LIC10365-coding protein of L. interrogans as a potential effector molecule in the promotion of a host inflammatory response. This is the first report of a leptospiral protein capable of up-regulating the expression of endothelial cell adhesion molecules ICAM-1 and E-selectin.  相似文献   

6.
This study examined four genes encoding for predicted membrane proteins selected from the genome sequences of Leptospira interrogans. Genes were cloned and the proteins expressed in E. coli. Immunoblotting analysis of the recombinants with sera from early and convalescent phases of a leptospirosis patient showed that two proteins, namely Lp29 and Lp49, were reactive with serum from both phases of the illness. These data were further confirmed in enzyme-linked immunosorbent assay using sera from both phases of seventeen confirmed leptospirosis specimens, suggesting that these proteins are presented to the host immune system during infection. In the early phase, anti-Lp29 IgM was detected in all sera when microscopic agglutination tests (MAT), the reference method for diagnosis of leptospirosis, were negative. The gene encoding Lp49 is conserved among five tested leptospiral pathogenic serovars, while Lp29 is present in serovars that are predominant in urban settings. These recombinant antigens might be valuable for serodiagnosis of both phases of leptospirosis.  相似文献   

7.
Leptospirosis is a world spread zoonosis caused by members of the genus Leptospira. Although leptospires were identified as the causal agent of leptospirosis almost 100 years ago, little is known about their biology, which hinders the development of new treatment and prevention strategies. One of the several aspects of the leptospiral biology not yet elucidated is the process by which outer membrane proteins (OMPs) traverse the periplasm and are inserted into the outer membrane. The crystal structure determination of the conserved hypothetical protein LIC12922 from Leptospira interrogans revealed a two domain protein homologous to the Escherichia coli periplasmic chaperone SurA. The LIC12922 NC-domain is structurally related to the chaperone modules of E. coli SurA and trigger factor, whereas the parvulin domain is devoid of peptidyl prolyl cis-trans isomerase activity. Phylogenetic analyses suggest a relationship between LIC12922 and the chaperones PrsA, PpiD and SurA. Based on our structural and evolutionary analyses, we postulate that LIC12922 is a periplasmic chaperone involved in OMPs biogenesis in Leptospira spp. Since LIC12922 homologs were identified in all spirochetal genomes sequenced to date, this assumption may have implications for the OMPs biogenesis studies not only in leptospires but in the entire Phylum Spirochaetes.  相似文献   

8.
A severe re‐emergingzoonosis, leptospirosis, is caused by pathogenic spirochetes of the genus Leptospira. Several studies have identified leptospiral surface proteins with the ability to bind ECM and plasma components, which could mediate adhesion and invasion through the hosts. It has been shown that Mce of pathogenic Leptospira spp. is an RGD (Arg‐Gly‐Asp)‐motif‐dependent virulence factor, responsible for infection of cells and animals. In the present article, we decided to further study the repertoire of the Mce activities in leptospiral biological properties. We report that the recombinant Mce is a broad‐spectrum ECM‐binding protein, capable of interacting with laminin, cellular and plasma fibronectin and collagen IV. Dose­–r­esponse interaction was observed for all the components, fulfilling ligand­–receptor requirements. Mce is a PLG binding protein capable to recruit this component from NHS, generating PLA in the presence of PLG activator. Binding of Mce was also observed with the leukocyte cell receptors αLβ2 [(CD11a/CD18)‐LFA‐1] and αMβ2 [(CD11b/CD18)‐Mac‐1], suggesting the involvement of this protein in the host immune response. Indeed, virulent Leptospira L1‐130 was capable of binding both integrins, whereas culture‐attenuated M‐20 strain only bind to αMβ2 [(CD11b/CD18)‐Mac‐1]. To the best of our knowledge, this is the first work to describe that Mce surface protein could mediate the attachment of Leptospira interrogans to human cell receptors αLβ2(CD11a/CD18) and αMβ2(CD11b/CD18).  相似文献   

9.
The search for a vaccine capable of conferring heterologous protection, through the identification of conserved and cross-protective antigens, remains an ongoing priority in leptospirosis research. In the present study, an in silico analysis was used to identify potentially protective lipoproteins from Leptospira interrogans serovar Copenhageni. Eight putative lipoproteins were selected (LIC10009, LIC10054, LIC10091, LIC11058, LIC11567, LIC13059, LIC13305, and LIC20172), cloned and expressed in Escherichia coli and purified by affinity chromatography. The recombinant proteins were used to inoculate mice and the subsequent humoral immune response was evaluated by ELISA. Seven of the potential lipoproteins induced a significant IgG response. Furthermore, all of the recombinant proteins were recognized by antibodies present in the sera of severe leptospirosis patients. These putative lipoproteins exhibited potential for further evaluation as prospective vaccine candidates.  相似文献   

10.
Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Å resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein–protein binding sites, suggesting a role in Leptospira–host interaction. This is the first crystal structure of a leptospiral antigen described to date.  相似文献   

11.
Leptospirosis is a globally distributed bacterial infectious disease caused by pathogenic members of the genus Leptospira. Infection can lead to illness ranging from mild and non-specific to severe, with jaundice, kidney and liver dysfunction, and widespread endothelial damage. The adhesion of pathogenic Leptospira species (spp.), the causative agent of leptospirosis, to host tissue components is necessary for infection and pathogenesis. While it is well-established that extracellular matrix (ECM) components play a role in the interaction of the pathogen with host molecules, we have shown that pathogenic Leptospira interrogans binds to host cells more efficiently than to ECM components. Using in vitro phage display to select for phage clones that bind to EA.hy926 endothelial cells, we identified the putative lipoproteins LIC10508 and LIC13411, and the conserved hypothetical proteins LIC12341 and LIC11574, as candidate L. interrogans sv. Copenhageni st. Fiocruz L1–130 adhesins. Recombinant LIC11574, but not its L. biflexa homologue LBF1629, exhibited dose-dependent binding to both endothelial and epithelial cells. In addition, LIC11574 and LIC13411 bind to VE-cadherin, an endothelial cell receptor for L. interrogans. Extraction of bacteria with the non-ionic detergent Triton X-114 resulted in partitioning of the candidate adhesins to the detergent fraction, a likely indication that these proteins are outer membrane localized. All candidate adhesins were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals as assessed by western blot. This work has identified bacterial adhesins that are potentially involved in L. interrogans infection of the mammalian host, and through cadherin binding, may contribute to dissemination and vascular damage. Our findings may be of value in leptospirosis control and prevention, with the bacterial adhesins potentially serving as targets for development of diagnostics, therapeutics, and vaccines.  相似文献   

12.
Leptospirosis is an important global human and veterinary health problem. Humans can be infected by exposure to chronically infected animals and their environment. An important focus of the current leptospiral research is the identification of outer membrane proteins (OMPs). Due to their location, leptospiral OMPs are likely to be relevant in host-pathogen interactions, hence their potential ability to stimulate heterologous immunity. The existing whole-genome sequence of Leptospira interrogans serovar Copenhageni offers a unique opportunity to search for cell surface proteins. Predicted genes encoding potential surface proteins were amplified from genomic DNA by PCR methodology and cloned into an Escherichia coli expression system. The partially purified recombinant proteins were probed by Western blotting with sera from human patients diagnosed with leptospirosis. Sixteen proteins, out of a hundred tested, were recognized by antibodies present in human sera. Four of these proteins were conserved among eight serovars of L. interrogans and absent in the non-pathogenic Leptospira biflexa. These proteins might be useful for the diagnosis of the disease as well as potential vaccine candidates.  相似文献   

13.
Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react with the LigB domain, suggesting applications in diagnosis and vaccines that are currently limited by the strain-specific leptospiral lipopolysaccharide coats.  相似文献   

14.
The pathogenic spirochete Leptospira interrogans disseminates throughout its hosts via the bloodstream, then invades and colonizes a variety of host tissues. Infectious leptospires are resistant to killing by their hosts' alternative pathway of complement-mediated killing, and interact with various host extracellular matrix (ECM) components. The LenA outer surface protein (formerly called LfhA and Lsa24) was previously shown to bind the host ECM component laminin and the complement regulators factor H and factor H-related protein-1. We now demonstrate that infectious L. interrogans contain five additional paralogs of lenA, which we designated lenB, lenC, lenD, lenE and lenF. All six genes encode domains predicted to bear structural and functional similarities with mammalian endostatins. Sequence analyses of genes from seven infectious L. interrogans serovars indicated development of sequence diversity through recombination and intragenic duplication. LenB was found to bind human factor H, and all of the newly-described Len proteins bound laminin. In addition, LenB, LenC, LenD, LenE and LenF all exhibited affinities for fibronectin, a distinct host extracellular matrix protein. These characteristics suggest that Len proteins together facilitate invasion and colonization of host tissues, and protect against host immune responses during mammalian infection.  相似文献   

15.
Pathogenic Leptospira bacteria are the causative agents of leptospirosis, a zoonotic disease affecting animals and humans worldwide. These pathogenic species have the ability to rapidly cross host tissue barriers by a yet unknown mechanism. A comparative analysis of pathogens and saprophytes revealed a higher abundance of genes encoding proteins with leucine‐rich repeat (LRR) domains in the genomes of pathogens. In other bacterial pathogens, proteins with LRR domains have been shown to be involved in mediating host cell attachment and invasion. One protein from the pathogenic species Leptospira interrogans, LIC10831, has been previously analysed via X‐ray crystallography, with findings suggesting it may be an important bacterial adhesin. Herein we show that LIC10831 elicits an antibody response in infected animals, is actively secreted by the bacterium, and binds human E‐ and VE‐cadherins. These results provide biochemical and cellular evidences of LRR protein‐mediated host–pathogen interactions and identify a new multireceptor binding protein from this infectious Leptospira species.  相似文献   

16.
Leptospirosis is a globally prevalent zoonosis caused by pathogenic Leptospira spp.; several serologic variants have reservoirs in synanthropic rodents. The capybara is the largest living rodent in the world, and it has a wide geographical distribution in Central and South America. This rodent is a significant source of Leptospira since the agent is shed via urine into the environment and is a potential public health threat. In this study, we isolated and identified by molecular techniques a pathogenic Leptospira from capybara in southern Brazil. The isolated strain was characterized by partial rpoB gene sequencing and variable-number tandem-repeats analysis as L. interrogans, serogroup Icterohaemorrhagiae. In addition, to confirm the expression of virulence factors, the bacterial immunoglobulin-like proteins A and B expression was detected by indirect immunofluorescence using leptospiral specific monoclonal antibodies. This report identifies capybaras as an important source of infection and provides insight into the epidemiology of leptospirosis.  相似文献   

17.
Adhesion of pathogenic Leptospira spp. to mammalian cells is mediated by their adhesins interacting with host cell receptors. In a previous study, we have identified two potential fibronectin (Fn) binding sites in central variable region (LigBCen) and C-terminal variable region (LigBCtv) of LigB, an adhesin of pathogenic Leptospira spp. In this study, we have further localized the Fn-binding site on LigBCen and found a domain of LigB (LigBCen2) (amino acids 1014-1165) strongly bound to Fn. LigBCen2 bound to a 70kDa domain of Fn including N-terminal domain (NTD) and gelatin binding domain (GBD), but with a higher binding affinity to NTD (K(d)=272nM) than to GBD (K(d)=1200nM). Except Fn, LigBCen2 also bound laminin and fibrinogen. LigBCen2 could bind MDCK cells, and blocked the binding of Leptospira on MDCK cells by 45%. These results suggest that LigBCen2 contributed to high affinity binding on NTD or GBD of Fn, laminin, and fibrinogen and mediated Leptospira binding on host cells.  相似文献   

18.
Leptospirosis is a re-emerging zoonosis with a global distribution. Surface-exposed outer membrane proteins (SE-OMPs) are crucial for bacterial–host interactions. SE-OMPs locate and expose their epitope on cell surface where is easily accessed by host molecules. This study aimed to screen for surface-exposed proteins and their abundance profile of pathogenic Leptospira interrogans serovar Pomona. Two complementary approaches, surface biotinylation and surface proteolytic shaving, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS) were employed to identify SE-OMPs of intact leptospires. For quantitative comparison, in-depth label-free analysis of SE-OMPs obtained from each method was performed using MaxQuant. The total number of proteins identified was 1,001 and 238 for surface biotinylation and proteinase K shaving, respectively. Among these, 39 were previously known SE-OMPs and 68 were predicted to be localized on the leptospiral surface. Based on MaxQuant analysis for relative quantification, six known SE-OMPs including EF- Tu, LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-OMPs, LipL71 were found in the 20 most abundant proteins, in which LipL41 was the highest abundant SE-OMP. Moreover, uncharacterized LIC14011 protein (LIP3228 ortholog in serovar Pomona) was identified as a novel predicted surface βb-OMP. High-abundance leptospiral SE-OMPs identified in this study may play roles in virulence and infection and are potential targets for development of vaccine or diagnostic tests for leptospirosis.  相似文献   

19.
Recent serologic studies have identified flying foxes (Pteropus spp.) as carriers of leptospirosis; however, little is known about the role of flying foxes as carriers of pathogenic Leptospira spp. To determine if Australian Pteropus spp. are carriers of pathogenic Leptospira spp., TaqMan real-time polymerase chain reaction (PCR) was used to detect leptospiral DNA in kidney and urine specimens from four species of flying fox, including the spectacled flying fox (Pteropus conspicillatus), black flying fox (Pteropus alecto), grey-headed flying fox (Pteropus poliocephalus), and little red flying fox (Pteropus scapulatus). Of the 173 kidney samples tested, 19 (11%) were positive for leptospiral DNA. Positive individuals were detected in all four species; significant differences in prevalence were not detected between species, between species within the same geographic area, or between geographically separated samples from the same species. Of the 46 urine samples tested, 18 (39%) tested positive by PCR, confirming that flying foxes shed leptospires into the environment. The detection of leptospiral DNA in the kidneys and urine of flying foxes suggests that flying foxes are carriers of pathogenic Leptospira spp. No evidence collected in the present study, however, suggests that flying foxes pose a significant risk of leptospirosis to the wider community or that humans who are in regular, close contact with flying foxes are at risk for leptospirosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号