首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Many motor skills, such as typing, consist of articulating simple movements into novel sequences that are executed faster and smoother with practice. Dynamics of re-organization of these movement sequences with multi-session training and its dependence on the amount of self-regulation of pace during training is not yet fully understood. In this study, participants practiced a sequence of key presses. Training sessions consisted of either externally (Cued) or self-initiated (Uncued) training. Long-term improvements in performance speed were mainly due to reducing gaps between finger movements in both groups, but Uncued training induced higher gains. The underlying kinematic strategies producing these changes and the representation of the trained sequence differed significantly across subjects, although net gains in speed were similar. The differences in long-term memory due to the type of training and the variation in strategies between subjects, suggest that the different neural mechanisms may subserve the improvements observed in overall performance.  相似文献   

2.
Chlamydomonas sajao, a single-celled, eucaryotic microalga, was inoculated onto replicated field plots cropped to corn at two rates (5 × 1011 and 5 × 107 log-phase cells ha−1) to assess colonization, reproduction, and persistence, changes in soil carbohydrate content, and wet stability of 0.92- to 1.68-mm-sized aggregates from the surface 2- to 3-mm soil veneer. The most-probable-number technique and extraction and fluorometric quantification of chlorophyll were used as indices of microalgal abundance. Cell numbers ranged up to 6.9 × 106 g of soil−1 by most probable number and were significantly greater on high-rate than on low-rate and control plots over a 10-week period. Chlorophyll content and most probable number were positively correlated (r = 0.64) for the high-rate plots but not for low-rate plots or the controls. Increased wet aggregate stability measurements (33 to 77%) for the high-rate plots during the growing season were significantly greater than for low-rate and control plots, which were not different from each other. The work leads support to the hypothesis that mass-cultured palmelloid microalgae are a feasible means for conditioning soil biologically.  相似文献   

3.
Human studies show that the learning of a new sensorimotor mapping that requires adaptation to directional errors is local and generalizes poorly to untrained directions. We trained monkeys to learn new visuomotor rotations for only one target in space and recorded neuronal activity in the primary motor cortex before, during and after learning. Similar to humans, the monkeys showed poor transfer of learning to other directions, as observed by behavioral aftereffects for untrained directions. To test for internal representations underlying these changes, we compared two features of neuronal activity before and after learning: changes in firing rates and changes in information content. Specific elevations of firing rate were only observed in a subpopulation of cells in the motor cortex with directional properties corresponding to the locally learned rotation; namely cells only showed plasticity if their preferred direction was near the training one. We applied measures from information theory to probe for learning-related changes in the neuronal code. Single cells conveyed more information about the direction of movement and this specific improvement in encoding was correlated with an increase in the slope of the neurons' tuning curve. Further, the improved information after learning enabled a more accurate reconstruction of movement direction from neuronal populations. Our findings suggest a neural mechanism for the confined generalization of a newly acquired internal model by showing a tight relationship between the locality of learning and the properties of neurons. They also provide direct evidence for improvement in the neural code as a result of learning.  相似文献   

4.
A basic tenet of microeconomics suggests that the subjective value of financial gains decreases with increasing assets of individuals ("marginal utility"). Using concepts from learning theory and microeconomics, we assessed the capacity of financial rewards to elicit behavioral and neuronal changes during reward-predictive learning in participants with different financial backgrounds. Behavioral learning speed during both acquisition and extinction correlated negatively with the assets of the participants, irrespective of education and age. Correspondingly, response changes in midbrain and striatum measured with functional magnetic resonance imaging were slower during both acquisition and extinction with increasing assets and income of the participants. By contrast, asymptotic magnitudes of behavioral and neuronal responses after learning were unrelated to personal finances. The inverse relationship of behavioral and neuronal learning speed with personal finances is compatible with the general concept of decreasing marginal utility with increasing wealth.  相似文献   

5.
We propose a stochastic learning algorithm for multilayer perceptrons of linear-threshold function units, which theoretically converges with probability one and experimentally exhibits 100% convergence rate and remarkable speed on parity and classification problems with typical generalization accuracy. For learning the n bit parity function with n hidden units, the algorithm converged on all the trials we tested (n=2 to 12) after 5.8 x 4.1(n) presentations for 0.23 x 4.0(n-6) seconds on a 533MHz Alpha 21164A chip on average, which is five to ten times faster than Levenberg-Marquardt algorithm with restarts. For a medium size classification problem known as Thyroid in UCI repository, the algorithm is faster in speed and comparative in generalization accuracy than the standard backpropagation and Levenberg-Marquardt algorithms.  相似文献   

6.
In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network.  相似文献   

7.
Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices'' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal) on both putting performance and the development of one''s representation of the golf putt during early skill acquisition. Novice golfers (N = 52) practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only.  相似文献   

8.
Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual) walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1–50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the lowest minimum detectable change values, supporting their use for tracking changes over multiple testing sessions. The between-session reliability and minimum detectable change values reported here provide an objective means for interpreting changes in temporal-spatial, kinematic variability, and dynamic stability measures during perturbed walking which may assist in identifying instability.  相似文献   

9.
To elucidate principles of neuronal organization providing preservation of informational content of converging impulse flows in afferent impulsation of neurons, a comparison is performed of results obtained in the previously carried out experiments on a model of neuronal network and in a study of correlates of behavior in the neuronal network of the monkey brain neostriatum (putamen). This comparison has shown that responses of the neuronal network model to different ratio of input impulse flows and changes of the neostriatal neuronal activity, which accompany different behavioral actions, are seen the most clearly in reorganization of composition of the most active neurons. Each combination of input signals and each behavioral action of the animal correspond to a non-repeated mosaic of neuronal activity. The data obtained indicate that the neuronal network, both real and in the simplest model variant, is able to transform the converging input signals into the mosaic equivalent to their entire combination and thereby to transmit the result of generalization of the input signals of the network to the innervated brain structures.  相似文献   

10.
Genetically engineeredErwinia carotovora persisted significantly longer in thermally perturbed microcosms (35 days) than in nonstressed microcosms (5 days). Decreased pressure of competitors and predators and increased nutrient availability were examined as the most probable reasons for greater vulnerability of perturbed microcosms to colonization by genetically engineered microorganisms (GEMs). Indigenous bacteria that competed with GEMs for the same nutrient sources (protein, cellulose, pectate) were present immediately after perturbation in densities one to two orders of magnitude lower than in unperturbed microcosms, but their populations increased to densities significantly higher than in unperturbed microscosms 10 to 15 days after inoculation. Predators of bacteria (protozoans, cladocerans, nematodes, and rotifers) were present during the experiment in unperturbed microcosms, while dense populations of bacteriovorous nanoflagellates developed in perturbed microcosms. Preemptive inoculation of perturbed microcosms with GEMs did not have a longlasting effect on the recovery of total, proteolytic, cellulolytic, and pectolytic bacteria in perturbed microscosms, indicating the absence of competitive exclusion.  相似文献   

11.
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.  相似文献   

12.
Invertebrate grazer-periphyton interactions in a eutrophic marsh pond   总被引:2,自引:0,他引:2  
SUMMARY. 1. The effects of two different invertebrate grazer guilds on the periphytic algal community were studied in a marsh pond in Manitoba, Canada over one entire open-water season.
2. Microcrustaceans (cladocerans, copepods, ostracods), which were numerically dominant in the unperturbed grazer community, effectively reduced the periphytic algal biomass to a persistent, depauperate residual assemblage throughout the season.
3. The perturbed grazer community, enclosed and treated with ro-tenone, was composed primarily of chironomids and oligochaetes. This community permitted a more diverse algal community to develop except when grazer numbers peaked.
4. When grazer numbers in the perturbed community were at a maximum, the algal assemblage appeared to be 'overgrazed'. Algal biomass was reduced below the minimum characteristic of the unperturbed community.
5. There was an inverse relationship between algal biomass and grazer numbers in both perturbed and unperturbed communities, but variation in degree of response was much greater in the perturbed system than in the unperturbed one.  相似文献   

13.
Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor‐stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor‐shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7–9 or 13–14) with presentations of peppermint odor and either stroking or shock. We used 14C 2‐deoxyglucose (2‐DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7‐9 mice learned to prefer an odor following either odor‐stroke or shock conditioning, whereas odor‐shock conditioning at PN13‐14 resulted in aversion/fear learning. 2‐DG data indicated enhanced bulbar activity in PN7‐9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13‐14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment‐related behaviors and behavioral development .  相似文献   

14.
Most neuronal models of learning assume that changes in synaptic strength are the main mechanism underlying long-term memory (LTM) formation. However, we show here that a persistent depolarization of membrane potential, a type of cellular change that increases neuronal responsiveness, contributes significantly to a long-lasting associative memory trace. The use of a model invertebrate network with identified neurons and known synaptic connectivity had the advantage that the contribution of this cellular change to memory could be evaluated in a neuron with a known function in the learning circuit. Specifically, we used the well-understood motor circuit underlying molluscan feeding and showed that a key modulatory neuron involved in the initiation of feeding ingestive movements underwent a long-term depolarization following behavioral associative conditioning. This depolarization led to an enhanced single cell and network responsiveness to a previously neutral tactile conditioned stimulus, and the persistence of both matched the time course of behavioral associative memory. The change in the membrane potential of a key modulatory neuron is both sufficient and necessary to initiate a conditioned response in a reduced preparation and underscores its importance for associative LTM.  相似文献   

15.
Here, we used an obstacle treadmill experiment to investigate the neuromuscular control of locomotion in uneven terrain. We measured in vivo function of two distal muscles of the guinea fowl, lateral gastrocnemius (LG) and digital flexor-IV (DF), during level running, and two uneven terrains, with 5 and 7 cm obstacles. Uneven terrain required one step onto an obstacle every four to five strides. We compared both perturbed and unperturbed strides in uneven terrain to level terrain. When the bird stepped onto an obstacle, the leg became crouched, both muscles acted at longer lengths and produced greater work, and body height increased. Muscle activation increased on obstacle strides in the LG, but not the DF, suggesting a greater reflex contribution to LG. In unperturbed strides in uneven terrain, swing pre-activation of DF increased by 5 per cent compared with level terrain, suggesting feed-forward tuning of leg impedance. Across conditions, the neuromechanical factors in work output differed between the two muscles, probably due to differences in muscle-tendon architecture. LG work depended primarily on fascicle length, whereas DF work depended on both length and velocity during loading. These distal muscles appear to play a critical role in stability by rapidly sensing and responding to altered leg-ground interaction.  相似文献   

16.
大鼠海马CA3区的习得性长时程突触增强   总被引:11,自引:4,他引:7  
易立  许世彤 《生理学报》1989,41(3):223-230
本实验应用慢性埋植电极技术以电生理学结合行为学的方法,观察大鼠条件性饮水反应的建立、消退和再建立过程中,其海马CA_3区突触效应的变化规律。以刺激内嗅区的穿通纤维(PP)诱发的单突触的群体锋电位(PS)及群体兴奋性突触后电位(EPSPs)为指标,经叠加处理分析,发现随着条件反应的建立,海马CA_3锥体细胞出现突触效应的长时程增强(LTP),它随行为反应的实验性消退而消退,而在随后再次建立条件反应时,又重新出现;且无论此LTP达最高水平还是它的完全消退均超前于条件性行为反应的水平。又在一个实验日训练作业结束时PS并未立即随之增大,在24h内它随时间而发展,但到第4小时已达最高水平,且条件反应率是与PS的水平相应的,对PS与EPSPs的斜率进行相关分析表明,PS的变化主要是突触传递功效的变化。上述结果表明,海马CA_3区随着行为训练有习得性LTP产生。从其发神变化特点及其与条件性行为的关系,提示此习得性LTP极其可能是本实验中学习和记忆的展经基础。  相似文献   

17.
We have used the gill- and siphon-withdrawal reflex of Aplysia californica to determine the morphological basis of the prolonged changes in synaptic effectiveness that underlie long-term habituation and sensitization. We have found that clear structural changes accompany behavioral modification and have demonstrated that these can be detected at the level of identified sensory neuron synapses, a critical site of plasticity for the short-term forms of both types of learning. These alterations occur at two different levels of synaptic organization and include (1) changes in focal regions of synaptic membrane specialization--the number, size and vesicle complement of sensory neuron active zones are larger in sensitized animals and smaller in habituated animals compared with controls--and (2) a parallel but more dramatic and global trend involving modulation of the total number of presynaptic varicosities per sensory neuron. Quantitative analysis of the time course over which these structural alterations occur during sensitization has further demonstrated that changes in the number of varicosities and active zones persist in parallel with the behavioral retention of the memory. This increase in the number of sensory neuron synapses during long-term sensitization in Aplysia is similar to changes in the number of synapses in the mammalian brain following various forms of environmental manipulations and learning (Greenough, 1984). Therefore learning may involve a form of neuronal growth across a broad segment of the animal kingdom, thereby suggesting a role for structural synaptic plasticity during long-term behavioral modifications.  相似文献   

18.
Shohamy D  Wagner AD 《Neuron》2008,60(2):378-389
Decisions are often guided by generalizing from past experiences. Fundamental questions remain regarding the cognitive and neural mechanisms by which generalization takes place. Prior data suggest that generalization may stem from inference-based processes at the time of generalization. By contrast, generalization may emerge from mnemonic processes occurring while premise events are encoded. Here, participants engaged in a two-phase learning and generalization task, wherein they learned a series of overlapping associations and subsequently generalized what they learned to novel stimulus combinations. Functional MRI revealed that successful generalization was associated with coupled changes in learning-phase activity in the hippocampus and midbrain (ventral tegmental area/substantia nigra). These findings provide evidence for generalization based on integrative encoding, whereby overlapping past events are integrated into a linked mnemonic representation. Hippocampal-midbrain interactions support the dynamic integration of experiences, providing a powerful mechanism for building a rich associative history that extends beyond individual events.  相似文献   

19.
This study investigated whether changes in lower limb muscle activity occurred in anticipation of a possible perturbation in 11 young (mean age 27 years) and 11 older (mean age 68 years) adults. Altered muscle activity could affect tripping responses and consequently the ecological validity of experimental results of studies on tripping. It was hypothesized that anticipatory muscle activity would be present immediately after a trip, and decrease after several subsequent unperturbed (forewarned) walking trials. Electromyograms of lower limb muscles were measured in 3 conditions: during normal walking, during forewarned walking immediately after a trip, and during forewarned walking several trials after a trip had occurred. Small but statistically significant differences in averaged muscle activity over a stride were found among conditions. Young adults showed slightly increased activity immediately after tripping (co-contraction) in hamstrings, quadriceps and tibialis anterior muscles. This increased activity diminished after several unperturbed trials, although it did not return to the baseline activity levels during normal walking. In older adults, an increased muscle activity among conditions was only discerned in tibialis anterior and soleus muscles. This suggested that older adults prefer to avoid contact with the obstacle over joint stiffening. Yet, for both age-groups, the increases in muscle activity were very small when compared to tripping responses reported in the literature. Therefore, anticipatory effects are not expected to jeopardize the validity of experiments in which subjects are perturbed more than once.  相似文献   

20.
Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This requires a means of quantifying the relative importance of prior experience and current information, so they can be balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be involved in aberrations of generalization, such as over-confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号