首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用pSIREN-RetroQ载体构建了3个沉默多药耐药相关蛋白(MRP1)基因表达质粒pSI REN-siRNAs.并通过限制性内切酶酶切鉴定和DNA测序鉴定,将截断MRP和全长MRP1 cDNA分别克隆到真核表达载体pEGFP-N2和pcDNA3.1中,产生了pEGFP-MRP1T和pcDNA-MRP1表达质粒.质粒pEGFP-MRP1T分别与3个pSIREN-siRNAs共转染HEK293细胞沉默MRP1T-GFP靶基因,pSIREN-siRNA1作为阴性对照.荧光显微镜下显示结果表明,与pSIREN-siRNA1相比,pSIREN-siRNA2和pSIREN-siRNA3产生的siRNA能够有效沉默MRP1T-GFP融合蛋白的表达.为了沉默全长MRP1基因的表达,pcDNA-MRP1分别与3个pSIREN-siRNAs共转染HEK293细胞.Western印迹和MTT分析表明,pSIREN-siRNA2和pSIREN- siRNA3能有效抑制190 kD MRP1在HEK293细胞中的表达,而pSIREN-siRNA1则不能.pSIREN-siRNA2和pSIREN-siRNA3能逆转MRP1转染HEK293细胞产生的多药耐药性.RNA二级结构预测结果分析表明,siRNA1靶序列mRNA局部自由能热动力参数ΔG低于siRNA2和siRNA3靶序列mRNA局部自由能热动力参数,siRNA1的GC含量和Tm值高于siRNA2和siRNA3.这些数据提示,siRNA和局部靶结构可能影响siRNA对MRP1 mRNA表达的沉默作用.  相似文献   

2.

Background  

Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1) decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-Buthionine (S,R)-sulfoximine (BSO) is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293) and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293) cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs.  相似文献   

3.

Background

Multidrug resistance-associated protein-1 (MRP1) protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD). We have previously shown that single nucleotide polymorphisms (SNPs) in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients.

Methods

Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621) in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models.

Results

One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies.

Conclusions

This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.  相似文献   

4.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a variety of alkylated purine adducts. Although Asp was identified as the active site residue in various DNA glycosylases based on the crystal structure, Glu-125 in human MPG (Glu-145 in mouse MPG) was recently proposed to be the catalytic residue. Mutational analysis for all Asp residues in a truncated, fully active MPG protein showed that only Asp-152 (Asp-132 in the human protein), which is located near the active site, is essential for catalytic activity. However, the substrate binding was not affected in the inactive Glu-152, Asn-152, and Ala-152 mutants. Furthermore, mutation of Asp-152 did not significantly affect the intrinsic tryptophan fluorescence of the enzyme and the far UV CD spectra, although a small change in the near UV CD spectra of the mutants suggests localized conformational change in the aromatic residues. We propose that in addition to Glu-145 in mouse MPG, which functions as the activator of a water molecule for nucleophilic attack, Asp-152 plays an essential role either by donating a proton to the substrate base and, thus, facilitating its release or by stabilizing the steric configuration of the active site pocket.  相似文献   

5.
The Multidrug Resistance Protein 1 (MRP1) is a membrane pump that mediates the efflux of a wide variety of xenobiotics, including arsenical and antimonial compounds, as demonstrated by the study of MRP1-transfected cell lines. We have previously shown that mrp1(-/-) cells are hypersensitive to sodium arsenite, sodium arsenate, and antimony potassium tartrate. We now report that the retroviral vector-mediated overexpression of MRP1 and of the two subunits of gamma-GCS (heavy and light) resulted in higher intracellular glutathione levels and in a greater level of resistance to sodium arsenite and antimony potassium tartrate, compared to the overexpression of MRP1 and gamma-GCS heavy alone. These observations further demonstrate that glutathione is an important component of MRP1-mediated cellular resistance to arsenite and antimony. However, the constitutive expression of MRP1 did not protect mice from the lethality of sodium arsenite and antimony potassium tartrate nor reduced the tissue accumulation of arsenic in mice injected i.p. with sodium arsenite. It is conceivable that, in vivo, other pump(s) effectively vicariate for MRP1-mediated transport of heavy metal oxyanions.  相似文献   

6.
7.
The gene PA4866 from Pseudomonas aeruginosa is documented in the Pseudomonas genome database as encoding a 172 amino acid hypothetical acetyltransferase. We and others have described the 3D structure of this protein (termed pita) [Davies et al. (2005) Proteins: Struct., Funct., Bioinf. 61, 677-679; Nocek et al., unpublished results], and structures have also been reported for homologues from Agrobacterium tumefaciens (Rajashankar et al., unpublished results) and Bacillus subtilis [Badger et al. (2005) Proteins: Struct., Funct., Bioinf. 60, 787-796]. Pita homologues are found in a large number of bacterial genomes, and while the majority of these have been assigned putative phosphinothricin acetyltransferase activity, their true function is unknown. In this paper we report that pita has no activity toward phosphinothricin. Instead, we demonstrate that pita acts as an acetyltransferase using the glutamate analogues l-methionine sulfoximine and l-methionine sulfone as substrates, with Km(app) values of 1.3 +/- 0.21 and 1.3 +/- 0.13 mM and kcat(app) values of 505 +/- 43 and 610 +/- 23 s-1 for l-methionine sulfoximine and l-methionine sulfone, respectively. A high-resolution (1.55 A) crystal structure of pita in complex with one of these substrates (l-methionine sulfoximine) has been solved, revealing the mode of its interaction with the enzyme. Comparison with the apoenzyme structure has also revealed how certain active site residues undergo a conformational change upon substrate binding. To investigate the role of pita in P. aeruginosa, a mutant strain, Depp4, in which pita was inactivated through an in-frame deletion, was constructed by allelic exchange. Growth of strain Depp4 in the absence of glutamine was inhibited by l-methionine sulfoximine, suggesting a role for pita in protecting glutamine synthetase from inhibition.  相似文献   

8.
The isoquinolinesulfonamide PKC inhibitors H-7 and H-8 inhibit primary, in vivo generated cytotoxic T lymphocyte (CTL) activity by 50% at concentrations approximating their reported Ki values for PKC, 6 uM and 15 uM respectively. However, a greater than ten-fold higher concentration of H-7 (100 uM) is required to reduce secondary or clone 8F CTL-mediated cytotoxicity by 50%. At this concentration H-7 is also reported to inhibit calmodulin (CaM)-dependent enzymes. To distinguish between the effect of 100 uM H-7 on PKC versus CaM the napthalenesulfonamide CaM antagonist W-7 was investigated. W-7 inhibited primary, secondary and clone 8F CTL-mediated cytolysis by 50% near its reported Ki value for CaM-dependent kinase activity, 12 uM. We conclude that W-7 and 100 uM H-7 reduce cytolysis by inhibiting CaM-dependent reactions and not PKC. Thus, these findings indicate that primary killers require both PKC- and CaM-dependent activation pathways for lethal hit delivery, whereas highly lytic cultured CTL use only one pathway dependent upon CaM.  相似文献   

9.
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5′-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.  相似文献   

10.
HAP1, also known as APE/Ref-1, is the major apurinic/apyrimidinic (AP) endonuclease in human cells. Previous structural studies have suggested a possible role for the Asp-210 residue of HAP1 in the enzymatic function of this enzyme. Here, we demonstrate that substitution of Asp-210 by Asn or Ala eliminates the AP endonuclease activity of HAP1, while substitution by Glu reduces specific activity ~500-fold. Nevertheless, these mutant proteins still bind efficiently to oligonucleotides containing either AP sites or the chemically unrelated bulky p-benzoquinone (pBQ) derivatives of dC, dA and dG, all of which are substrates for HAP1. These results indicate that Asp-210 is required for catalysis, but not substrate recognition, consistent with enzyme kinetic data indicating that the HAP1–D210E protein has a 3000-fold reduced Kcat for AP site cleavage, but an unchanged Km. Through analysis of the binding of Asp-210 substitution mutants to oligonucleotides containing either an AP site or a pBQ adduct, we conclude that the absence of Asp-210 allows the formation of a stable HAP1–substrate complex that exists only transiently during the catalytic cycle of wild-type HAP1 protein. We interpret these data in the context of the structure of the HAP1 active site and the recently determined co-crystal structure of HAP1 bound to DNA substrates.  相似文献   

11.
Zhang J  Abdel-Rahman AA 《FEBS letters》2006,580(13):3070-3074
Gene matching shows that Nischarin is a mouse homologue of human imidazoline receptor antisera-selective (IRAS) protein, a viable candidate of the imidazoline (I1) receptor. Nischarin and IRAS share the functions of enhancing cell survival, growth and migration. Bioinformatics modeling indicates that the IRAS and Nischarin may be transmembrane proteins and the convergence information raises the interesting possibility that Nischarin might serve as the I1-receptor. To test this hypothesis, we developed antibodies against the Nischarin protein, and conducted signal transduction (functional) studies with the I1-receptor agonist rilmenidine in the presence and absence of Nischarin antisense oligodeoxynucleotides (ODNs). NIH3T3 cells transfected with the Nischarin cDNA and incubated with the newly synthesized antibody expressed a 190 kD band. The antibody identified endogenous Nischarin in differentiated PC12 cells around 210 kD, which is consistent with reported findings in other cells of neuronal origin. The immunoflourescence findings showed the targeted protein to be associated with the cell membrane in PC12 cells. Nischarin ODNs abolished the expression of Nischarin in PC12 cells. Equally important, the Nischarin ODNs eliminated the production of MAPK(p42/44), a recognized signal transduction product generated by I1-receptor activation in differentiated PC12 cells. Together, the present findings suggest that Nischarin may serve as the functional I1-receptor or at least share a common signaling pathway in the differentiated PC12 cells.  相似文献   

12.
The 190-kDa multidrug resistance protein MRP1 (ABCC1) is a polytopic transmembrane protein belonging to the ATP-binding cassette transporter superfamily. In addition to conferring resistance to various antineoplastic agents, MRP1 is a transporter of conjugated organic anions, including the cysteinyl leukotriene C(4) (LTC(4)). We previously characterized the ATPase activity of reconstituted immunoaffinity-purified native MRP1 and showed it could be stimulated by its organic anion substrates (Mao, Q., Leslie, E. M., Deeley, R. G., and Cole, S. P. C. (1999) Biochim. Biophys. Acta 1461, 69-82). Here we show that purified reconstituted MRP1 is also capable of active transport of its substrates. Thus LTC(4) uptake by MRP1 proteoliposomes was osmotically sensitive and could be inhibited by two MRP1-specific monoclonal antibodies. LTC(4) uptake was also markedly reduced by the competitive inhibitor, S-decyl-glutathione, as well as by the MRP1 substrates 17 beta-estradiol 17-beta-(d-glucuronide), oxidized glutathione, and vincristine in the presence of reduced glutathione. The K(m) for ATP and LTC(4) were 357 +/- 184 microm and 366 +/- 38 nm, respectively, and 2.14 +/- 0.75 microm for 17 beta-estradiol 17-beta-(d-glucuronide). Transport of vincristine required the presence of both ATP and GSH. Conversely, GSH transport was stimulated by vincristine and verapamil. Our data represent the first reconstitution of transport competent purified native MRP1 and confirm that MRP1 is an efflux pump, which can transport conjugated organic anions and co-transport vincristine together with GSH.  相似文献   

13.
Diarrhea is one of the most common adverse side effects observed in ∼7% of individuals consuming Food and Drug Administration (FDA)-approved drugs. The mechanism of how these drugs alter fluid secretion in the gut and induce diarrhea is not clearly understood. Several drugs are either substrates or inhibitors of multidrug resistance protein 4 (MRP4), such as the anti-colon cancer drug irinotecan and an anti-retroviral used to treat HIV infection, 3′-azido-3′-deoxythymidine (AZT). These drugs activate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluid secretion by inhibiting MRP4-mediated cAMP efflux. Binding of drugs to MRP4 augments the formation of MRP4-CFTR-containing macromolecular complexes that is mediated via scaffolding protein PDZK1. Importantly, HIV patients on AZT treatment demonstrate augmented MRP4-CFTR complex formation in the colon, which defines a novel paradigm of drug-induced diarrhea.  相似文献   

14.
Allopatric populations that show genetic differentiation but lack phenotypic diagnosability are difficult to classify. In 1946, Arnett described a new species of burying beetle (Silphidae: Nicrophorus) from Luzon Island, Philippines, Nicrophorus benguetensis. In 2002, Sikes et al., finding the species to be inconsistently diagnosable, synonymized N. benguetensis under Nicrophorus nepalensis Hope 1831. We rigorously and quantitatively test the validity of N. benguetensis using several different species delimitation criteria. We employed discrete and quantitative character‐based methods to test similarity criteria using linear morphometrics in a discriminant analysis framework, and percentage sequence divergences based on sequences from four mitochondrial DNA (mtDNA) genes (COI, COII, ND4 and ND5) and two nuclear genes [28S (D2 region) and CAD]. We also employed tree‐based methods to test phylogenetic criteria using mtDNA sequences and morphology with parsimony, Bayesian inference and maximum likelihood. The analysis of discrete phenotypic characters did not reliably diagnose N. benguetensis. The results of the discriminant analysis provided moderate support for the validity of N. benguetensis (71.4% of the specimens were properly classified). There is adequate genetic distance between N. benguetensis and its nearest neighbour for DNA barcoding to identify an unknown sequence, although this may be an artefact of the small sample size. Phylogenetic analyses of the morphological data, with and without the morphometric data, yielded unresolved trees. Molecular phylogenetic results found N. benguetensis to be monophyletic, but neither clearly rejected nor supported its validity. Two of our approaches using molecular data diagnosed N. benguetensis, but those that used phenotypic data did not exceed a 75% success rate. We conclude, therefore, that N. benguetensis, despite being a weakly distinct allopatric population, and deserving of additional study, should remain synonymized until further analysis suggests otherwise. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 311–333.  相似文献   

15.
Several fluorescent probes have been used in functional studies to analyze drug transport in multidrug-resistant cells by fluorescent microscopy. Because many of these molecules have some drawbacks, such as toxicity, nonspecific background, or accumulation in mitochondria, new fluorescent compounds have been proposed as more useful tools. Among these substances, Bodipy-FL-Verapamil, a fluorescent conjugate of the drug efflux blocker verapamil, has been used to study P-glycoprotein activity in different cell types. In this study we tested by fluorescent microscopy the accumulation of Bodipy-FL-Verapamil in cell lines that overexpress either P-glycoprotein (P-gp) or multidrug resistance-related protein 1 (MRP1). Expression of P-gp and MRP1 was evaluated at the mRNA level by RT-PCR technique and at the protein level by flow cytometric analysis using C219 and MRP-m6 monoclonal antibodies. Results indicate that Bodipy-FL-Verapamil is actually a substrate for both proteins. As a consequence, any conclusion about P-gp activity obtained by the use of Bodipy-FL-Verapamil as fluorescent tracer should be interpreted with caution.  相似文献   

16.
W. Nagl 《Protoplasma》1979,100(1):53-71
Summary In contrast to mammalian cell nuclei those of plants display nearly an identical ultrastructure in all developmental stages and tissues. This indicates that the gross organization of chromatin is species-specific, but not tissue-specific and function-dependent. The species-specific nuclear ultrastructure is determined by the basic nuclear DNA content (2 C value). The higher the DNA content, the more the euchromatin remains in the condensed state during interphase, but to a lower coiling order than the heterochromatin.Some difficulties in the interpretation of electron micrographs of cell nuclei, and the possible role of repetitive DNA sequences in the karyotypical condensation of euchromatin in plants are discussed.  相似文献   

17.
18.
D M Gibbs  W Vale  J Rivier  S S Yen 《Life sciences》1984,34(23):2245-2249
The effects of CRF(41), oxytocin (OT), and arginine vasopressin (AVP) on ACTH secretion were studied alone and in combination in an in vitro system of superfused rat hemipituitaries. CRF(41) (10(-9)M) and AVP (10(-8)M) alone produced a significant increase in ACTH secretion while OT (10(-8)M) alone had no effect. However the same concentration of OT markedly potentiated the ACTH response to CRF(41) while having no effect on the ACTH response to AVP. The data support a physiologic role for OT in the regulation of ACTH secretion.  相似文献   

19.
20.
The x-ray structure of the prototypic MATE family member, NorM from Vibrio cholerae, reveals a protein fold composed of 12 transmembrane helices (TMHs), confirming hydropathy analyses of the majority of (prokaryotic and plant) MATE transporters. However, the mammalian MATEs are generally predicted to have a 13(th) TMH and an extracellular C terminus. Here we affirm this prediction, showing that the C termini of epitope-tagged, full-length human, rabbit, and mouse MATE1 were accessible to antibodies from the extracellular face of the membrane. Truncation of these proteins at or near the predicted junction between the 13(th) TMH and the long cytoplasmic loop that precedes it resulted in proteins that (i) trafficked to the membrane and (ii) interacted with antibodies only after permeabilization of the plasma membrane. CHO cells expressing rbMate1 truncated at residue Gly-545 supported levels of pH-sensitive transport similar to that of cells expressing the full-length protein. Although the high transport rate of the Gly-545 truncation mutant was associated with higher levels of membrane expression (than full-length MATE1), suggesting the 13(th) TMH may influence substrate translocation, the selectivity profile of the mutant indicated that TMH13 has little impact on ligand binding. We conclude that the functional core of MATE1 consists of 12 (not 13) TMHs. Therefore, we used the x-ray structure of NorM to develop a homology model of the first 12 TMHs of MATE1. The model proved to be stable in molecular dynamic simulations and agreed with topology evident from preliminary cysteine scanning of intracellular versus extracellular loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号