首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quantitative intraparticle enzyme distribution of Assemblase, an industrially employed polydisperse immobilized penicillin-G acylase, was measured. Because of strong autofluorescence of the carrier, the generally applied technique of confocal scanning microscopy could not be used; light microscopy was our method of choice. To do so, Assemblase particles of various sizes were sectioned, labeled with antibodies specifically against the enzyme, and analyzed light microscopically. Image analysis software was developed and used to determine the intraparticle enzyme distribution, which was found to be heterogeneous, with most enzyme located in the outer regions of the particles. Larger particles showed steeper gradients than smaller ones. A mathematical representation of the intraparticle profiles, based on in-stationary enzyme diffusion into the particles, was validated successfully for a broad range of particle sizes using data for volume-averaged particle size and enzyme loading. The enzyme gradients determined in this work will be used as input for a physical model that quantitatively describes the complex behavior of Assemblase. Such a physical model will lead to identification of the current bottlenecks in Assemblase and can serve as a starting point for the design of improved biocatalysts that also may be based on intelligent use of enzyme gradients.  相似文献   

2.
In a study of Assemblase, an industrial immobilized penicillin-G acylase, various electron microscopic techniques were used to relate intra-particle enzyme heterogeneity with the morphological heterogeneity of the support material at various levels of detail. Transmission electron microscopy was used for the study of intra-particle penicillin-G acylase distribution in Assemblase particles of various sizes; it revealed an abrupt increase in enzyme loading at the particle surface (1.4-fold) and in the areas (designated halo's) surrounding internal macro-voids (7.7-fold). Cryogenic field-emission scanning electron microscopy related these abrupt local enzyme heterogeneities to local heterogeneity of the support material by revealing the presence of dense top layers surrounding both the particle exterior and the internal macro-voids. Furthermore, it showed a very distinct morphological appearance of the halo. Most probably, all these regions contained relatively more chitosan than gelatin (the polymers Assemblase was constructed of), which suggested local polymer demixing during particle production. A basic thermodynamic line of reasoning suggested that a difference in hydrophilicity between the two polymers induced local demixing. In the future, thermodynamic knowledge on such polymer interactions resulting in matrix heterogeneity may be used as a tool for biocatalyst design.  相似文献   

3.
A physical model was derived for the synthesis of the antibiotic cephalexin with an industrial immobilized penicillin G acylase, called Assemblase. In reactions catalyzed by Assemblase, less product and more by-product are formed in comparison with a free-enzyme catalyzed reaction. The model incorporates reaction with a heterogeneous enzyme distribution, electrostatically coupled transport, and pH-dependent dissociation behavior of reactants and is used to obtain insight in the complex interplay between these individual processes leading to the suboptimal conversion. The model was successfully validated with synthesis experiments for conditions ranging from heavily diffusion limited to hardly diffusion limited, including substrate concentrations from 50 to 600 mM, temperatures between 273 and 303 K, and pH values between 6 and 9. During the conversion of the substrates into cephalexin, severe pH gradients inside the biocatalytic particle, which were previously measured by others, were predicted. Physical insight in such intraparticle process dynamics may give important clues for future biocatalyst design. The modular construction of the model may also facilitate its use for other bioconversions with other biocatalysts.  相似文献   

4.
Penicillin G acylase from Escherichia coli was immobilized on Eupergit C with different enzyme loading. The activity of the immobilized preparations was assayed in the hydrolysis of penicillin G and was found to be much lower than would be expected on the basis of the residual enzyme activity in the immobilization supernatant. Active-site titration demonstrated that the immobilized enzyme molecules on average had turnover rates much lower than that of the dissolved enzyme. This was attributed to diffusion limitations of substrate and product inhibition. Indeed, when the immobilized preparations were crushed, the activity increased from 587 U g-1 to up to 974 U g-1. The immobilized preparations exhibited up to 15% lower turnover rates than the dissolved enzyme in cephalexin synthesis from 7-ADCA and D-(-)-phenylglycine amide. The synthesis over hydrolysis ratios of the immobilized preparations were also much lower than that of the dissolved enzyme. This was partly due to diffusion limitations but also to an intrinsic property of the immobilized enzyme because the synthesis over hydrolysis ratio of the crushed preparations was much lower than that of the dissolved enzyme.  相似文献   

5.
Penicillin-G acylase (EC 3.5.1.11) from Escherichia coli catalyzed the synthesis of various beta-lactam antibiotics in ice at -20 degrees C with higher yields than obtained in solution at 20 degrees C. The initial ratio between aminolysis and hydrolysis of the acyl-enzyme complex in the synthesis of cephalexin increased from 1.3 at 20 degrees C to 25 at -20 degrees C. The effect on the other antibiotics studied was less, leading us to conclude that freezing of the reaction medium influences the hydrolysis of each nucleophile-acyl-enzyme complex to a different extent. Only free penicillin-G acylase could perform transformations in frozen media: immobilized preparations showed a low, predominantly hydrolytic activity under these conditions.  相似文献   

6.
青霉素酰化酶固定化前后动力学行为的比较   总被引:1,自引:0,他引:1  
在优化的固定化条件下,通过戊二醛交联直接将青霉素酰化酶固定化。在优化的环境条件下测定游离酶和两种固定化酶的动力学常数。结果表明,尽管固定化酶的米氏常数增大,但产物抑制作用减弱,裂解青霉素的实验结果表明,固定化酶更适合在工业上应用。  相似文献   

7.
A mathematical model is presented for the kinetically controlled synthesis of cephalexin that describes the heterogeneous reaction-diffusion process involved in a batch reactor with glyoxyl-agarose immobilized penicillin acylase. The model is based on equations considering reaction and diffusion components. Reaction kinetics was considered according to the mechanism proposed by Schro?n, while diffusion of the reacting species was described according to Fick's law. Intrinsic kinetic and diffusion parameters were experimentally determined in independent experiments. It was found that from the four kinetic constants, the one corresponding to the acyl-enzyme complex hydrolysis step had the greatest value, as previously reported by other authors. The effective diffusion coefficients of all substances were about 5×10(-10)m(2)/s, being 10% lower than free diffusion coefficients and therefore agreed with the highly porous structure of glyoxyl-agarose particles. Simulations made from the reaction-diffusion model equations were used to evaluate and analyze the impact of internal diffusional restrictions in function of catalyst enzyme loading and particle size. Increasing internal diffusional restrictions decreases the Cex synthesis/hydrolysis ratio, the conversion yield and the specific productivity. A nonlinear relationship between catalyst enzyme loading and specific productivity of Cex was obtained with the implication that an increase in catalyst enzyme loading will not increase the volumetric productivity by the same magnitude as it occurs with the free enzyme. Optimization of catalyst and reactor design should be done considering catalyst enzyme loading and particle size as the most important variables. The approach presented can be extended to other processes catalyzed by immobilized enzymes.  相似文献   

8.
A new hydrophobic and catalytic membrane was prepared by immobilizing Penicillin G acylase (PGA, EC.3.5.1.11) from E. coli on a nylon membrane, chemically grafted with butylmethacrylate (BMA). Hexamethylenediamine (HMDA) and glutaraldehyde (Glu) were used as a spacer and coupling agent, respectively. PGA was used for the enzymatic synthesis of cephalexin, using D(-)-phenylglycine methyl ester (PGME) and 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) as substrates. Several factors affecting this reaction, such as pH, temperature, and concentrations of substrates were investigated. The results indicated good enzyme-binding efficiency of the pre-treated membrane, and an increased stability of the immobilized PGA towards pH and temperature. Calculation of the activation energies showed that cephalexin production by the immobilized biocatalyst was limited by diffusion, resulting in a decrease of enzyme activity and substrate affinity. Temperature gradients were employed as a way to reduce the effects of diffusion limitation. Cephalexin was found to linearly increase with the applied temperature gradient. A temperature difference of about 3 degrees C across the catalytic membrane resulted into a cephalexin synthesis increase of 100% with a 50% reduction of the production times. The advantage of using non-isothermal bioreactors in biotechnological processes, including pharmaceutical applications, is also discussed.  相似文献   

9.
In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis ratio (S/H ratio) and the yield decreased, resulting in lower product and higher by-product concentrations. The effect of pH, enzyme loading, and temperature was investigated, their influence on the course of the reaction was evaluated, and eventually diffusion limitation was minimised. It was found that at pH >or=7 the effect of diffusion limitation was eminent; the difference in S/H ratio and yield between free and immobilised enzyme was considerable. At lower pH, the influence of diffusion limitation was minimal. At low temperature, high yields and S/H ratios were found for all enzymes tested because the hydrolysis reactions were suppressed and the synthesis reaction was hardly influenced by temperature. The enzyme loading influenced the S/H ratio and yield, as expected for diffusion-limited particles. For Assemblase 3750 (the number refers to the degree of enzyme loading), it was proven that both cephalexin synthesis and hydrolysis were diffusion limited. For Assemblase 7500, which carries double the enzyme load of Assemblase 3750, these reactions were also proven to be diffusion limited, together with the binding-step of the substrate phenylglycine amide to the enzyme. For an actual process, the effects of diffusion limitation should preferably be minimised. This can be achieved at low temperature, low pH, and high substrate concentrations. An optimum in S/H ratio and yield was found at pH 7.5 and low temperature, where a relatively low reaction pH can be combined with a relatively high solubility of 7-ADCA. When comparing the different enzymes at these conditions, the free enzyme gave slightly better results than both immobilised biocatalysts, but the effect of diffusion limitation was minimal.  相似文献   

10.
Glucoamylase and glucose oxidase have been immobilized on carbodiimide-treated activated carbon particles of various sizes. Loading data indicate nonuniform distribution of immobilized enzyme within the porous support particles. Catalysts with different enzyme loading and overall activities have been prepared by varying enzyme concentration in the immobilizing solution. Analysis of these results by a new method based entirely upon experimentally observable catalyst properties indicates that intrinsic catalytic activity is reduced by immobilization of both enzymes. Immobilized glucoamylase intrinsic activity decreases with increasing enzyme loading, and similar behavior is suggested by immobilized glucose oxidase data analysis. The overall activity data interpretation method should prove useful in other immobilized enzyme characterization research, especially in situations where the intraparticle distribution of immobilized enzyme is nonuniform and unknown.  相似文献   

11.
Microorganisms were tested for production of cephalosporin acylase. Some bacteria showed strong acylase activity for all of cephalexin, cephaloridine, cephalotin, penicillin G and ampicillin. Some showed a rather specific activity for cephalexin. Pseudomonas melanogenum KY 3987 showed specific activity only for cephalexin and ampicillin which contain a side chain of d-phenylglycine. Most of these acylase-producing bacteria had the ability to synthesize cephalexin and other cephalosporins from 7-aminocephem compounds and organic acid esters. Among them, Ktuyvera citrophila KY 7844 was one of the most promising organisms for enzymatic synthesis of cephalosporins. This organism had the ability to catalyze N-acylation of 7-aminocephem compound not only with α-amino acid ester, but also with such acid esters as 1-(1 H)-tetrazolylacetate methylester which has no α-amino group.  相似文献   

12.
聚丙烯腈纤维固定化青霉素酰化酶合成头孢氨苄的研究   总被引:4,自引:0,他引:4  
将巨大芽孢杆菌胞外青霉素酰化酶通过共价键结合到聚丙烯腈纤维的衍生物上。制成的丝状固定化青霉素酰化酶表现活力达 1 5 3U g(湿重 )。固定化酶合成头孢氨苄的最适pH为 6 5 ,最适温度为 40℃。 7 ADCA的投料浓度以 4%为好 ,7 ADCA与PGME的投料量比率为1∶2 ,最佳用酶量为 1 70U g 7 ADCA。在pH6 5、温度 3 0℃时 ,固定化酶对 7 ADCA的表观米氏常数K7 ADCA为 0 1 6 2mol L ,对PGME的表观米氏常数KPGME为 0 3 6 4mol L ,最大反应速度Vmax为0 0 4 6 2mol·L- 1·min- 1,用固定化酶合成头孢氨苄 ,使用 5 0次保留酶活力 83 9%  相似文献   

13.
There is a marked trend in pharmaceutical industry towards the replacement of classical organic methods by “green” alternatives that minimize or eliminate the generation of waste and avoid, where possible, the use of toxic and/or hazardous reagents and solvents. In this work the kinetically controlled synthesis of cephalexin by soluble and penicillin G acylase immobilized in sol–gel micro‐particles with magnetic properties was performed in aqueous media with PGME and 7‐ADCA as substrates, at different concentrations of substrate, temperature, pH, enzyme to substrate ratio and acyl donor to nucleophile ratio. Excess acyl donor had a strong effect on cephalexin productivity. A PGME/7‐ADCA ratio of 3 was considered optimum. A maximum specific productivity of at 160 mM 7‐ADCA, 480 mM PGME and low enzyme to substrate ratio at 32.5 U mmol?1 7‐ADCA was obtained with immobilized PGA in full aqueous medium, suggesting that diffusional limitations were minimized when compared with other commercial biocatalysts. A half‐life of 133 h for the immobilized biocatalyst was estimated during cephalexin synthesis in the presence of 100 mM 7‐ADCA and 300 mM PGME, in 50 mM Tris/HCl at pH 7.2 and 14°C. These results compare quite favorably with those previously reported for the kinetically controlled synthesis of cephalexin. Biotechnol. Bioeng. 2010;107: 753–762. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Mass transfer limitations were studied in enzyme preparations of alpha-chymotrypsin made by deposition on different porous support materials such as controlled pore glasses, Celite, and polyamides of different particle sizes. It is the onset of mass transfer limitations that determines the position of the activity optimum with respect to enzyme loading on each support. The evidence of various experiments indicates that internal diffusional limitations are the important mechanism for the observed mass transfer limitations. External diffusion was not found to play an important role under the conditions used, and it was also found that when immobilizing multilayers of enzyme the buried enzyme molecules are active to a large extent. An extreme situation is observed on Celite at very high loadings. Under these conditions, this support is expected to have its pores completely filled with packed enzyme molecules, and then it is the diffusion within the enzyme layer that determines the observed rate. As the enzyme loading increases, the area of contact between the deposited enzyme layers and the liquid solution inside the pores diminishes, causing a decrease on the observed rate of an intrinsically fast reaction which apparently is incongruous with the presence of more enzyme in the system. This work shows that mass transfer limitations can be an important factor when working with immobilized enzymes in organic media, and its study should be carried out in order to avoid undesired reduced enzyme activities and specificities.  相似文献   

15.
The effect of methanol on the kinetically controlled synthesis of cephalexin by free and immobilized penicillin G acylase (PGA) was investigated. Catalytic and hydrophobic membranes were obtained by chemical grafting, activation, and PGA immobilization on hydrophobic nylon supports. Butyl methacrylate (BMA) was used as graft monomer. Increasing concentrations of methanol were found to cause a greater deleterious effect on the activity of free than on that of the immobilized enzyme. Methanol, however, improved the kinetic stability of cephalexin synthesized by free PGA, resulting in higher maximum yields. By contrast, immobilized PGA reached 100% yields even in the absence of the cosolvent. Cephalexin synthesis by the catalytic membrane was also performed in a non-isothermal bioreactor. Under these conditions, a 94% increase of the synthetic activity and complete conversion of the limiting substrate to cephalexin were obtained. The addition of methanol reduced the non-isothermal activity increase. The physical cause responsible for the non-isothermal behavior of the hydrophobic catalytic membrane was identified in the process of thermodialysis.  相似文献   

16.
Synthesis of cephalexin with immobilized penicillin acylase at high substrates concentration at an acyl donor to nucleophile molar ratio of 3 was comparatively evaluated in aqueous and ethylene glycol media using a statistical model. Variables under study were temperature, pH and enzyme to substrate ratio and their effects were evaluated on cephalexin yield, ratio of initial rates of cephalexin synthesis to phenylglycine methyl ester hydrolysis, volumetric and specific productivity of cephalexin synthesis, that were used as response parameters. Results obtained in both reaction media were modeled using surface of response methodology and optimal operation conditions were determined in terms of an objective function based on the above parameters. At very high substrates concentrations the use of organic co-solvents was not required to attain high yields and actually almost stoichiometric yields were obtained in a fully aqueous media with the advantages of higher productivities than in an organic co-solvent media and compliance with the principles of green chemistry.  相似文献   

17.
Yields of kinetically controlled synthesis of antibiotics catalyzed by penicillin G acylase from Escherichia coli (PGA) have been greatly increased by continuous extraction of water soluble products (cephalexin) away from the surroundings of the enzyme. In this way its very rapid enzymatic hydrolysis has been avoided. Enzymes covalently immobilized inside porous supports acting in aqueous two-phase systems have been used to achieve such improvements of synthetic yields. Before the reaction is started, the porous structure of the biocatalyst can be washed and filled with one selected phase. In this way, when the pre-equilibrated biocatalyst is mixed with the second phase (where the reaction product will be extracted), the immobilized enzyme remains in the first selected phase in spite of its possibly different natural trend. Partition coefficients (K) of cephalexin in very different aqueous two-phase systems were firstly evaluated. High K values were obtained under drastic conditions. The best K value for cephalexin (23) was found in 100% PEG 600-3 M ammonium sulfate where cephalexin was extracted to the PEG phase. Pre-incubation of immobilized PGA derivatives in ammonium sulfate and further suspension with 100% PEG 600 allowed us to obtain a 90% synthetic yield of cephalexin from 150 mM phenylglycine methyl ester and 100 mM 7-amino desacetoxicephalosporanic acid (7-ADCA). In this reaction system, the immobilized enzyme remains in the ammonium sulfate phase and hydrolysis of the antibiotic becomes suppressed because of its continuous extraction to the PEG phase. On the contrary, synthetic yields of a similar process carried out in monophasic systems were much lower (55%) because of a rapid enzymatic hydrolysis of cephalexin.  相似文献   

18.
We describe the rational design of a new efficient biocatalyst and the development of a sustainable green process for the synthesis of cephalosporins bearing a NH? group on the acyl side chain. The new biocatalyst was developed starting from the WT penicillin acylase (PA) from Escherichia coli by combining enzyme mutagenesis, in position α146 and β24 (βF24A/αF146Y), and immobilization on an appropriate modified industrial support, glyoxyl Eupergit C250L. The obtained derivative was used in the kinetically controlled synthesis of cephalexin, cefprozil and cefaclor and compared to the WT-PA and an already described mutant, PA-βF24A, with improved properties. The new biocatalyst posses a very high ratio between the rates of the synthesis and two undesired hydrolyses (acylating ester and the amidic product). In particular, a very low amidase activity was observed with PA-βF24A/αF146Y and, consequently, the hydrolysis of the produced antibiotic was avoided during the process. Taking advantage of this property, higher conversions in the synthesis of cephalexin (99% versus 76%), cefaclor (99% versus 65%) and cefprozil (99% versus 60%) were obtained compared to the WT enzyme. Furthermore, the new mutant also show a higher synthetic activity compared to PA-βF24A immobilized on the same support, allowing the maximum yields to be achieved in very short reaction times. The production of cephalexin with the immobilized βF24A/αF146Y acylase has been developed on a pre-industrial scale (30 l). After 20 cycles, the average yield was 93%. The biocatalyst showed good stability properties and no significant decrease in performance.  相似文献   

19.
Penicillin G acylase gene from Bacillus megaterium ATCC 14945 has been isolated. Recombinant Escherichia coli clones were screened for clear halo forming activity on the lawn of Staphylococcus aureus ATCC 6538P using the enzymatic acylating reaction of 7-aminodeacetoxycephalosporanic acid (7-ADCA) and D-(alpha)-phenylglycine methylester. The gene was contained within a 2.8 kb DNA fragment and expressed efficiently when transferred from E. coli to Bacillus subtilis. A twenty times greater amount of enzyme was produced in B. subtilis transformant than that in B. megaterium. The purified enzyme from subcloned B. subtilis showed that the native enzyme consisted of two identical subunits, each with a molecular weight of 57,000. The enzyme was able to react on various cephalosporins, i.e., cephalothin, cefamandole, cephaloridine, cephaloglycin, cephalexin and cephradine.  相似文献   

20.
Enzymatic O2‐dependent oxidations are receiving increased attention for use in fine chemicals synthesis. Solid supported oxidation catalysts often show poor efficiency due to pronounced O2 diffusion restriction. Internal O2 supply therefore constitutes a key parameter for optimizing the enzyme immobilization. We herein describe an optical sensing method for quantitation of space‐averaged intraparticle O2 concentrations in porous Sepabeads carriers. The method applies phosphorescence lifetime measurements on Sepabeads labeled with an O2 sensitive indicator dye. Using glucose oxidase immobilized at different loadings (0.005–12 mg/g) on labeled Sepabeads, we analyzed in real time during the enzymatic reaction the formation of O2 concentration differences between bulk liquid and the intraparticle environment. We show that the O2 gradient at apparent steady state increased with increasing enzyme loading, so that O2 eventually became totally depleted from inside the highly loaded carriers. We also show that the residual intraparticle O2 concentration was correlated with the catalytic effectiveness factor (η) of the enzyme immobilizate used, thus providing a direct measure of the magnitude of O2 diffusion limitation. Once corrected for diffusional effect, η was no longer dependent on enzyme loading and its constant value now described the intrinsic activity of immobilized glucose oxidase. Three common procedures of enzyme immobilization, involving adsorption, cross‐linking, and covalent attachment, are shown to differ widely concerning the obtained intrinsic activity. Therefore, intraparticle O2 concentration data enable distinction between diffusional restriction and activity loss as the two principal factors limiting the effectiveness of immobilized O2 dependent enzymes, and thus they inform rational design of an optimally active oxidation biocatalyst on solid support. Biotechnol. Bioeng. 2013; 110: 2086–2095. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号