首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristic of cold-adapted enzymes, high catalytic efficiency at low temperatures, is often associated with low thermostability and high flexibility. In this context, we analyzed the catalytic properties and solved the crystal structure of phenylalanine hydroxylase from the psychrophilic bacterium Colwellia psychrerythraea 34H (CpPAH). CpPAH displays highest activity with tetrahydrobiopterin (BH(4)) as cofactor and at 25 degrees C (15 degrees C above the optimal growth temperature). Although the enzyme is monomeric with a single L-Phe-binding site, the substrate binds cooperatively. In comparison with PAH from mesophilic bacteria and mammalian organisms, CpPAH shows elevated [S(0.5)](L-Phe) (= 1.1 +/- 0.1 mm) and K(m)(BH(4))(= 0.3 +/- 0.1 mm), as well as high catalytic efficiency at 10 degrees C. However, the half-inactivation and denaturation temperature is only slightly lowered (T(m) approximately 52 degrees C; where T(m) is half-denaturation temperature), in contrast to other cold-adapted enzymes. The crystal structure shows regions of local flexibility close to the highly solvent accessible binding sites for BH(4) (Gly(87)/Phe(88)/Gly(89)) and l-Phe (Tyr(114)-Pro(118)). Normal mode and COREX analysis also detect these and other areas with high flexibility. Greater mobility around the active site and disrupted hydrogen bonding abilities for the cofactor appear to represent cold-adaptive properties that do not markedly affect the thermostability of CpPAH.  相似文献   

2.
Tetrahydropterins are obligatory cofactors for tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis. A series of synthetic analogues of 6(R)-L-erythro-5,6,7, 8-tetrahydrobiopterin (BH(4)) with different substituents in positions C2, N3, C4, N5, C6, C7, and N8 on the ring were used as active site probes for recombinant human TH. The enzyme tolerates rather bulky substituents at C6, as seen by the catalytic efficiency (V(max)/K(m)) and the coupling efficiency (mol of L-DOPA produced/mol of tetrahydropterin oxidized) of the cofactors. Substitutions at C2, C4, N5, and N8 abolish the cofactor activity of the pterin analogues. Molecular docking of BH(4) into the crystal structure of the catalytic domain of ligand-free rat TH results in complexes in which the pteridine ring pi-stacks with Phe300 and the N3 and the amino group at C2 hydrogen bonds with Glu332. The pteridine ring also establishes interactions with Leu294 and Gln310. The distance between C4a in the pteridines and the active site iron was 4.2 +/- 0.5 A for the ensemble of docked conformers. Docking of BH(4) analogues into TH also shows that the most bulky substituents at C6 can be well-accommodated within the large hydrophobic pocket surrounded by Ala297, Ser368, Tyr371, and Trp372, without altering the positioning of the ring. The pterin ring of 7-BH(4) shows proper stacking with Phe300, but the distance between the C4a and the active site iron is 0.6 A longer than for bound BH(4), a finding that may be related to the high degree of uncoupling observed for 7-BH(4).  相似文献   

3.
The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.  相似文献   

4.
J M Hevel  M A Marletta 《Biochemistry》1992,31(31):7160-7165
Nitric oxide synthase (NOS) (EC 1.14.23) catalyzes the oxidation of L-arginine to citrulline and nitric oxide. The complex reaction carried out by NOS, which involves NADPH, O2, and enzyme-bound FAD, FMN, and tetrahydrobiopterin (BH4), has only recently begun to be elucidated. Herein we report the characterization of the pterin requirement of murine macrophage NOS. Although purified NOS activity was not dependent on BH4, activity was significantly enhanced by BH4 in a concentration-dependent fashion. NOS purified in the absence of added BH4 was found to contain substoichiometric concentrations of enzyme-bound pterin, where increased concentrations of bound pterin correlated with an increase in activity when assayed in the absence of exogenous BH4. However, NOS purified in the presence of BH4 followed by gel filtration exhibited a 1 mol of pterin:1 mol of NOS 130-kDa subunit stoichiometry and activity that was essentially independent of exogenous BH4. Experiments to probe a redox role for the pterin were carried out using pterin analogues. 6(R,S)-Methyltetrahydropterin was found to increase NOS activity in enzyme purified in the absence of BH4. However, the deaza analogue, 6(R,S)-methyl-5-deazatetrahydropterin, was not only incapable of supporting enzymatic turnover but also inhibited citrulline formation in a concentration-dependent manner. Overall, these results support a role for BH4 in the NOS reaction that involves stabilization of the enzyme and redox chemistry wherein a 1:1 stoichiometry between bound pterin and NOS subunit results in maximum activity.  相似文献   

5.
The crystal structure of the dimeric catalytic domain (residues 118-424) of human PheOH (hPheOH), cocrystallized with the oxidized form of the cofactor (7,8-dihydro-L-biopterin, BH(2)), has been determined at 2.0 A resolution. The pterin binds in the second coordination sphere of the catalytic iron (the C4a atom is 6.1 A away), and interacts through several hydrogen bonds to two water molecules coordinated to the iron, as well as to the main chain carbonyl oxygens of Ala322, Gly247, and Leu249 and the main chain amide of Leu249. Some important conformational changes are seen in the active site upon pterin binding. The loop between residues 245 and 250 moves in the direction of the iron, and thus allows for several important hydrogen bonds to the pterin ring to be formed. The pterin cofactor is in an ideal orientation for dioxygen to bind in a bridging position between the iron and the pterin. The pterin ring forms an aromatic pi-stacking interaction with Phe254, and Tyr325 contributes to the positioning of the pterin ring and its dihydroxypropyl side chain by hydrophobic interactions. Of particular interest in the hPheOH x BH(2) binary complex structure is the finding that Glu286 hydrogen bonds to one of the water molecules coordinated to the iron as well as to a water molecule which hydrogen bonds to N3 of the pterin ring. Site-specific mutations of Glu286 (E286A and E286Q), Phe254 (F254A and F254L), and Tyr325 (Y325F) have confirmed the important contribution of Glu286 and Phe254 to the normal positioning of the pterin cofactor and catalytic activity of hPheOH. Tyr325 also contributes to the correct positioning of the pterin, but has no direct function in the catalytic reaction, in agreement with the results obtained with rat TyrOH [Daubner, S. C., and Fitzpatrick, P. F. (1998) Biochemistry 37, 16440-16444]. Superposition of the binary hPheOH.BH(2) complex onto the crystal structure of the ligand-free rat PheOH (which contains the regulatory and catalytic domains) [Kobe, B., Jennings, I. G., House, C. M., Michell, B. J., Goodwill, K. E., Santarsiero, B. D., Stevens, R. C., Cotton, R. G. H., and Kemp, B. E. (1999) Nat. Struct. Biol. 6, 442-448] reveals that the C2'-hydroxyl group of BH(2) is sufficiently close to form hydrogen bonds to Ser23 in the regulatory domain. Similar interactions are seen with the hPheOH.adrenaline complex and Ser23. These interactions suggest a structural explanation for the specific regulatory properties of the dihydroxypropyl side chain of BH(4) (negative effector) in the full-length enzyme in terms of phosphorylation of Ser16 and activation by L-Phe.  相似文献   

6.
Recently formylmethanofuran dehydrogenase from the archaebacterium Methanosarcina barkeri has been shown to be a novel molybdo-iron-sulfur protein. We report here that the enzyme contains one mol of a bound pterin cofactor/mol molybdenum, similar but not identical to the molybdopterin of milk xanthine oxidase. The two pterins, after oxidation with I2 at pH 2.5, showed identical fluorescence spectra and, after oxidation with permanganate at pH 13, yielded pterin 6-carboxylic acid. They differed, however, in their apparent molecular mass: the pterin of formylmethanofuran dehydrogenase was 400 Da larger than that of milk xanthine oxidase, a property also exhibited by the pterin cofactor of eubacterial molybdoenzymes. A homogeneous formylmethanofuran dehydrogenase preparation was used for these investigations. The enzyme, with a molecular mass of 220 kDa, contained 0.5-0.8 mol molybdenum, 0.6-0.9 mol pterin, 28 +/- 2 mol non-heme iron and 28 +/- 2 mol acid-labile sulfur/mol based on a protein determination with bicinchoninic acid. The specific activity was 175 mumol.min-1.mg-1 (kcat = 640 s-1) assayed with methylviologen (app. Km = 0.02 mM) as artificial electron acceptor. The apparent Km for formylmethanofuran was 0.02 mM.  相似文献   

7.
Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), but its function is not fully understood. Specifically, it is unclear whether BH4 participates directly in electron transfer. We investigated the redox properties of BH4 and several other pteridines with cyclic voltammetry and Osteryoung square wave voltammetry. BH4 was oxidized at a potential of +0.27 V vs normal hydrogen electrode (NHE); the corresponding reductive signal after the reversal of the scan direction was very small. Instead, reduction occurred at a potential of -0.16 V vs NHE; there was no corresponding oxidative signal. These two transitions were interdependent, indicating that the reductive wave at -0.16 V represented the regeneration of BH4 from its product of oxidation at +0.27 V. Similar voltammograms were obtained with tetrahydroneopterin and 6,7-dimethyltetrahydropterin, both of which can substitute for BH4 in NOS catalysis. Completely different voltammograms were obtained with 7,8-dihydrobiopterin, sepiapterin, 2'-deoxysepiapterin, and autoxidized BH4. These 7,8-dihydropterins, which do not sustain NOS catalysis, were oxidized at much higher potentials (+0.82-1.04 V vs NHE), and appreciable reduction did not occur between +1.2 and -0.8 V, in line with the concept of a redox role for BH4 in NOS catalysis. However, the electrochemical properties of the potent pterin-site NOS inhibitor 4-amino-BH4 resembled those of BH4, whereas the active pterin cofactor 5-methyl-BH4 was not re-reduced after oxidation. We conclude that the 2-electron redox cycling of the pterin cofactor between BH4 and quinonoid dihydrobiopterin is not essential for NO synthesis. The data are consistent with 1-electron redox cycling between BH4 and the trihydrobiopterin radical BH3(*).  相似文献   

8.
Tryptophan hydroxylase (TPH) carries out the 5-hydroxylation of L-Trp, which is the rate-limiting step in the synthesis of serotonin. We have prepared and characterized a stable N-terminally truncated form of human TPH that includes the catalytic domain (Delta90TPH). We have also determined the conformation and distances to the catalytic non-heme iron of both L-Trp and the tetrahydrobiopterin cofactor analogue L-erythro-7,8-dihydrobiopterin (BH2) bound to Delta90TPH by using 1H NMR spectroscopy. The bound conformers of the substrate and the pterin were then docked into the modeled three-dimensional structure of TPH. The resulting ternary TPH-BH2-L-Trp structure is very similar to that previously determined by the same methods for the complex of phenylalanine hydroxylase (PAH) with BH2 and L-Phe [Teigen, K., et al. (1999) J. Mol. Biol. 294, 807-823]. In the model, L-Trp binds to the enzyme through interactions with Arg257, Ser336, His272, Phe318, and Phe313, and the ring of BH2 interacts mainly with Phe241 and Glu273. The distances between the hydroxylation sites at C5 in L-Trp and C4a in the pterin, i.e., 6.1 +/- 0.4 A, and from each of these sites to the iron, i.e., 4.1 +/- 0.3 and 4.4 +/- 0.3 A, respectively, are also in agreement with the formation of a transient iron-4a-peroxytetrahydropterin in the reaction, as proposed for the other hydroxylases. The different conformation of the dihydroxypropyl chain of BH2 in PAH and TPH seems to be related to the presence of nonconserved residues, i.e., Tyr235 and Pro238 in TPH, at the cofactor binding site. Moreover, Phe313, which seems to interact with the substrate through ring stacking, corresponds to a Trp residue in both tyrosine hydroxylase and PAH (Trp326) and appears to be an important residue for influencing the substrate specificity in this family of enzymes. We show that the W326F mutation in PAH increases the relative preference for L-Trp as the substrate, while the F313W mutation in TPH increases the preference for L-Phe, possibly by a conserved active site volume effect.  相似文献   

9.
The agonist, [3H](-)[S]-1-(2-amino-2-carboxyethyl)-5-fluoro-pyrimidine-2,4-dione ([3H](S)F-Willardiine) binding to functional alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of resealed plasma membrane vesicles and nerve endings freshly isolated from the rat cerebral cortex displayed two binding sites (K(D1)=33+/-7 nM, B(MAX1)=1.6+/-0.3 pmol/mg protein, K(D2)=720+/-250 nM and B(MAX2)=7.8+/-4.0 pmol/mg protein). The drug which impairs AMPA receptor desensitisation, 6-chloro-3,4-dihydro-3-(2-norbornene-5-yl)-2H-1,2,4-benzothiadiazine-7-sulphonamide-1,1-dioxide (cyclothiazide, CTZ) fully displaced the [3H](S)F-Willardiine binding at a concentration of 500 microM. In the presence of 100 microM CTZ (K(I(CTZ))=60+/-6 microM), both the antagonist [3H]-1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(F)quinoxaline-7-sulfonamide ([3H]NBQX: K(D)=24+/-4 nM, B(MAX)=12.0+/-0.1 pmol/mg protein) and the high-affinity agonist binding showed similar affinity reduction ([3H](S)F-Willardiine: K(D)=140+/-19 nM, B(MAX)=2.9+/-0.5 pmol/mg protein; [3H]NBQX: K(D)=111+/-34 nM, B(MAX)=12+/-3 pmol/mg protein). To disclose structural correlates underlying genuine allosteric binding interactions, molecular mechanics calculations of CTZ-induced structural changes were performed with the use of PDB data on extracellular GluR2 binding domain dimeric crystals available by now. Hydrogen-bonding and root mean square (rms) values of amino acid residues recognising receptor agonists showed minor alterations in the agonist binding sites itself. Moreover, CTZ binding did not affect dimeric subunit structures significantly. These findings indicated that the structural changes featuring the non-desensitised state could possibly occur to a further site of the extracellular GluR2 binding domain. The increase of agonist efficacy on allosteric CTZ binding may be interpreted in terms of a mechanism involving AMPA receptor desensitisation sequential to activation.  相似文献   

10.
Tetrahydrobiopterin (BH(4)) is an essential cofactor of endothelial nitric oxide (NO) synthase and when depleted, endothelial dysfunction results with decreased production of NO. BH(4) is also an anti-oxidant being a good "scavenger" of oxidative species. NADPH oxidase, xanthine oxidase, and mitochondrial enzymes producing reactive oxygen species (ROS) can induce elevated oxidant stress and cause BH(4) oxidation and subsequent decrease in NO production and bioavailability. In order to define the process of ROS-mediated BH(4) degradation, a sensitive method for monitoring pteridine redox-state changes is required. Considering that the conventional fluorescence method is an indirect method requiring conversion of all pteridines to oxidized forms, it would be beneficial to use a rapid quantitative assay for the individual detection of BH(4) and its related pteridine metabolites. To study, in detail, the BH(4) oxidative pathways, a rapid direct sensitive HPLC assay of BH(4) and its pteridine derivatives was adapted using sequential electrochemical and fluorimetric detection. We examined BH(4) autoxidation, hydrogen peroxide- and superoxide-driven oxidation, and Fenton reaction hydroxyl radical-driven BH(4) transformation. We demonstrate that the formation of the primary two-electron oxidation product, dihydrobiopterin (BH(2)), predominates with oxygen-induced BH(4) autoxidation and superoxide-catalyzed oxidation, while the irreversible metabolites, pterin and dihydroxanthopterin (XH(2)), are largely produced during hydroxyl radical-driven BH(4) oxidation.  相似文献   

11.
Human mast cells (HMC-1) take up anandamide (arachidonoyl-ethanolamide, AEA) with a saturable process (K(m)=200+/-20 nM, V(max)=25+/-3 pmol min(-1) mg protein(-1)), enhanced two-fold over control by nitric oxide-donors. Internalized AEA was hydrolyzed by a fatty acid amide hydrolase (FAAH), whose activity became measurable only in the presence of 5-lipoxygenase, but not cyclooxygenase, inhibitors. FAAH (K(m)=5.0+/-0.5 microM, V(max)=160+/-15 pmol min(-1) mg protein(-1)) was competitively inhibited by palmitoylethanolamide. HMC-1 cells did not display a functional cannabinoid receptor on their surface and neither AEA nor palmitoylethanolamide affected tryptase release from these cells.  相似文献   

12.
Tetrahydrobiopterin (BH(4)) is an essential cofactor for several enzymes, including all three forms of nitric oxide synthases, the three aromatic hydroxylases, and glyceryl-ether mono-oxygenase. A proper level of BH(4) is, therefore, necessary for the metabolism of phenylalanine and the production of nitric oxide, catecholamines, and serotonin. BH(4) deficiency has been shown to be closely associated with diverse neurological psychiatric disorders. Sepiapterin reductase (SPR) is an enzyme that catalyzes the final step of BH(4) biosynthesis. Whereas the number of cases of neuropsychological disorders resulting from deficiencies of other catalytic enzymes involved in BH(4) biosynthesis and metabolism has been increasing, only a handful of cases of SPR deficiency have been reported, and the role of SPR in BH(4) biosynthesis in vivo has been poorly understood. Here, we report that mice deficient in the Spr gene (Spr(-/-)) display disturbed pterin profiles and greatly diminished levels of dopamine, norepinephrine, and serotonin, indicating that SPR is essential for homeostasis of BH(4) and for the normal functions of BH(4)-dependent enzymes. The Spr(-/-) mice exhibit phenylketonuria, dwarfism, and impaired body movement. Oral supplementation of BH(4) and neurotransmitter precursors completely rescued dwarfism and phenylalanine metabolism. The biochemical and behavioral characteristics of Spr(-/-) mice share striking similarities with the symptoms observed in SPR-deficient patients. This Spr mutant strain of mice will be an invaluable resource to elucidate many important issues regarding SPR and BH(4) deficiencies.  相似文献   

13.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin (BH(4))-dependent enzyme that catalyzes the hydroxylation of l-Phe to l-Tyr. The non-heme iron in the enzyme (Fe(III) as isolated) is 6-coordinated to a 2-His-1-carboxylate motif and three water molecules (wat1, wat2 and wat3). Tyr325 is at the second coordination sphere, hydrogen-bonded to water (wat1). We prepared and expressed mutants with Leu, Ala, Ser and Phe at this position. Only Y325L and the conservative mutation Y325F resulted in stable enzymes, but the mutant Y325F has been found to be post-translationally hydroxylated and to revert back to wild-type PAH [S.D. Kinzie, M. Thevis, K. Ngo, J. Whitelegge, J.A. Loo, M.M. Abu-Omar, J. Am. Chem. Soc. 125 (2003) 4710-4711], being inadequate to investigate the early inferred functional role of Tyr325. On the other hand, compared to wild-type PAH, Y325L shows reduced specific activity, decreased coupling efficiency and decreased iron content. The mutant also reveals a very high affinity for l-Phe and BH(4) and does not manifest positive cooperativity for the substrate. All together, our results support that the mutation Y325L causes the removal or increased delocalization of the iron-ligated wat1 and, in turn, a less tight binding of the metal. Tyr325 thus appears to have an important role ensuring stoichiometric binding of iron, correct geometry of the complexes with substrate and cofactor and, consequently, a right coupling efficiency of the PAH reaction. In addition, the residue appears to be important for the correct cooperative regulation by l-Phe.  相似文献   

14.
Decreased levels of tetrahydrobiopterin (BH4), an absolute cofactor for nitric oxide synthase (NOS), lead to uncoupling of NOS into a superoxide v. nitric oxide producing enzyme, and it is this uncoupling that links it to the development of vascular disease. However, the effects of in vivo deficiency of BH4 on neointimal formation after vascular injury have not been previously investigated. Hph-1 mice, which display 90% deficiency in guanine triphosphate cyclohydrolase I, the rate limiting enzyme in BH4 synthesis, were used. Hph-1 and wild-type mice, treated with either vehicle or BH4 (n = 15 per group), were subjected to wire-induced femoral artery injury, and NOS expression and activity, inflammation, cell proliferation, superoxide production, and neointimal formation were assessed. The major form of NOS expressed over vessel wall after vascular injury was endothelial NOS. Hph-1 mice exhibited lower NOS activity (2.8 +/- 0.3 vs. 4.5 +/- 0.4 pmol/min/mg protein, P < 0.01), and higher aortic superoxide content (5.2 +/- 2.0 x 10(5) cpm vs. 1.6 +/- 0.7 x 10(5) cpm, P < 0.01) compared with wild-type controls, indicating uncoupling of NOS. Treatment of hph-1 mice with BH4 significantly increased NOS activity (from 2.8 +/- 0.3 to 4.1 +/- 0.4 pmol.min(-1).mg protein(-1), P < 0.05), and attenuated superoxide production (from 5.2 +/- 2.0 x 10(5) cpm to 0.8 +/- 0.7 x 10(5) cpm, P < 0.05). Hph-1 mice also had higher inflammatory reactions and more cell proliferation after vascular injury. Furthermore, hph-1 mice responded by a marked increase in neointimal formation at 4 wk after vascular injury, compared with wild-type controls (intima:media ratio: 4.5 +/- 0.5 vs. wild-type 0.7 +/- 0.1, P < 0.001). Treatment of hph-1 mice with BH4 prevented vascular injury-induced increase in neointimal formation (intima:media ratio: 1.4 +/- 0.1 vs. hph-1, P < 0.001). Treatment had no effect on wild-type controls. In summary, we describe, for the first time, that in vivo BH4 deficiency facilitates neointimal formation after vascular injury. Modulation of BH4 bioavailability is an important therapeutic target for restenosis.  相似文献   

15.
Kinetic studies of tetrameric recombinant human tyrosine hydroxylase isoform 1 (hTH1) have revealed properties so far not reported for this enzyme. Firstly, with the natural cofactor (6R)-Lerythro-5,6,7, 8-tetrahydrobiopterin (H4biopterin) a time-dependent change (burst) in enzyme activity was observed, with a half-time of about 20 s for the kinetic transient. Secondly, nonhyperbolic saturation behaviour was found for H4biopterin with a pronounced negative cooperativity (0.39 < h < 0.58; [S]0.5 = 24 +/- 4 microM). On phosphorylation of Ser40 by protein kinase A, the affinity for H4biopterin increased ([S]0.5 = 11 +/- 2 microM) and the negative cooperativity was amplified (h = 0.27 +/- 0.03). The dimeric C-terminal deletion mutant (Delta473-528) of hTH1 also showed negative cooperativity of H4biopterin binding (h = 0.4). Cooperativity was not observed with the cofactor analogues 6-methyl-5,6,7,8-tetrahydropterin (h = 0.9 +/- 0.1; Km = 62.7 +/- 5.7 microM) and 3-methyl-5,6,7, 8-tetrahydropterin (H43-methyl-pterin)(h = 1.0 +/- 0.1; Km = 687 +/- 50 microM). In the presence of 1 mM H43-methyl-pterin, used as a competitive cofactor analogue to BH4, hyperbolic saturation curves were also found for H4biopterin (h = 1.0), thus confirming the genuine nature of the kinetic negative cooperativity. This cooperativity was confirmed by real-time biospecific interaction analysis by surface plasmon resonance detection. The equilibrium binding of H4biopterin to the immobilized iron-free apoenzyme results in a saturable positive resonance unit (DeltaRU) response with negative cooperativity (h = 0.52-0.56). Infrared spectroscopic studies revealed a reduced thermal stability both of the apo-and the holo-hTH1 on binding of H4biopterin and Lerythro-dihydrobiopterin (H2biopterin). Moreover, the ligand-bound forms of the enzyme also showed a decreased resistance to limited tryptic proteolysis. These findings indicate that the binding of H4biopterin at the active site induces a destabilizing conformational change in the enzyme which could be related to the observed negative cooperativity. Thus, our studies provide new insight into the regulation of TH by the concentration of H4biopterin which may have significant implications for the physiological regulation of catecholamine biosynthesis in neuroendocrine cells.  相似文献   

16.
Tetrahydrobiopterin ((6R)-5,6,7,8-tetrahydro-L-biopterin (H4biopterin)) is an essential cofactor of nitric-oxide synthases (NOSs), but its role in enzyme function is not known. Binding of the pterin affects the electronic structure of the prosthetic heme group in the oxygenase domain and results in a pronounced stabilization of the active homodimeric structure of the protein. However, these allosteric effects are also produced by the potent pterin antagonist of NOS, 4-amino-H4biopterin, suggesting that the natural cofactor has an additional, as yet unknown catalytic function. Here we show that the 5-methyl analog of H4biopterin, which does not react with O2, is a functionally active pterin cofactor of neuronal NOS. Activation of the H4biopterin-free enzyme occurred in a biphasic manner with half-maximally effective concentrations of approximately 0.2 microM and 10 mM 5-methyl-H4biopterin. Thus, the affinity of the 5-methyl compound was 3 orders of magnitude lower than that of the natural cofactor, allowing the direct demonstration of the functional anticooperativity of the two pterin binding sites of dimeric NOS. In contrast to H4biopterin, which inactivates nitric oxide (NO) through nonenzymatic superoxide formation, up to 1 mM of the 5-methyl derivative did not consume O2 and had no effect on NO steady-state concentrations measured electrochemically with a Clark-type NO electrode. Therefore, reconstitution with 5-methyl-H4biopterin allowed, for the first time, the detection of enzymatic NO formation in the absence of superoxide or NO scavengers. These results unequivocally identify free NO as a NOS product and indicate that reductive O2 activation by the pterin cofactor is not essential to NO biosynthesis.  相似文献   

17.
Tetrahydrobiopterin (BH(4)) is an essential cofactor of nitric oxide synthase that improves endothelial function in diabetics, smokers, and patients with hypercholesterolemia. Insulin resistance has been suggested as a contributing factor in the development of endothelial dysfunction via an abnormal pteridine metabolism. We hypothesized that BH(4) would restore flow-mediated vasodilation (FMD, endothelial-dependent vasodilation), which may affect insulin resistance in type 2 diabetic patients. Thirty-two subjects (12 type 2 diabetic subjects, 10 matched nondiabetic subjects, and 10 healthy unmatched subjects) underwent infusion of BH(4) or saline in a random crossover study. Insulin sensitivity index (S(I)) was measured by hyperinsulinemic isoglycemic clamp. FMD was measured using ultrasonography. BH(4) significantly increased S(I) in the type 2 diabetics [3.6 +/- 0.6 vs. 4.9 +/- 0.7 x 10(-4) dl.kg(-1).min(-1)/(microU/ml), P < 0.05], while having no effects in nondiabetics [8.9 +/- 1.1 vs. 9.0 +/- 0.9 x 10(-4) dl.kg(-1).min(-1)/(microU/ml), P = 0.92] or in healthy subjects [17.5 +/- 1.6 vs. 18 +/- 1.8 x 10(-4) dl.kg(-1).min(-1)/(microU/ml), P = 0.87]. BH(4) did not affect the relative changes in brachial artery diameter from baseline FMD (%) in type 2 diabetic subjects (2.3 +/- 0.8 vs. 1.8 +/- 1.0%, P = 0.42), nondiabetic subjects (5.3 +/- 1.1 vs. 6.6 +/- 0.9%, P = 0.32), or healthy subjects (11.9 +/- 0.6 vs. 11.0 +/- 1.0%, P = 0.48). In conclusion, BH(4) significantly increases insulin sensitivity in type 2 diabetic patients without any discernible improvement in endothelial function.  相似文献   

18.
Prostaglandin (PG) D(2) ethanolamide (prostamide D(2)) was reduced to 9alpha,11beta-PGF(2) ethanolamide (9alpha,11beta-prostamide F(2)) by PGF synthase, which also catalyzes the reduction of PGH(2) and PGD(2) to PGF(2alpha) and 9alpha,11beta-PGF(2), respectively. These enzyme activities were measured by a new method, the liquid chromatographic-electrospray ionization-mass spectrometry (LC/ESI/MS) technique, which could simultaneously detect the substrate and all products. PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2) were separated on a TSKgel ODS 80Ts column, ionized by electrospray, and detected in the negative mode. Selected ion monitoring (SIM) of m/z 353 ([M-H](-)), 353 ([M-H](-)), 351 ([M-H](-)), 333 ([M-H-H(2)O](-)), 456 ([M+59](-)), and m/z 358 ([M-37](-)) was used for quantifying PGF(2alpha), 9alpha,11beta-PGF(2), PGD(2), PGH(2), 9alpha,11beta-prostamide F(2), and prostamide D(2), respectively. The detection limit for PGF(2alpha) and 9alpha,11beta-PGF(2) was 0.01pmol; that for PGH(2) and PGD(2), 0.1pmol; and that for prostamide D(2) and 9alpha,11beta-prostamide F(2), 0.5 and 0.03pmol, respectively. The LC/ESI/MS technique for measuring PGF synthase activity showed higher sensitivity than other methods. Using this method, we found that Bimatoprost, the ethyl amide analog of 17-phenyl-trinor PGF(2alpha) and an anti-glaucoma agent, inhibited all three reductase activities of PGF synthase when used at a low concentration. These results suggest that Bimatoprost also behaves as a potent PGF synthase inhibitor in addition to having prostamide-like activity.  相似文献   

19.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin and non-heme iron-dependent enzyme that hydroxylates L-Phe to l-Tyr using molecular oxygen as additional substrate. A dysfunction of this enzyme leads to phenylketonuria (PKU). The conformation and distances to the catalytic iron of both L-Phe and the cofactor analogue L-erythro-7,8-dihydrobiopterin (BH2) simultaneously bound to recombinant human PAH have been estimated by (1)H NMR. The resulting bound conformers of both ligands have been fitted into the crystal structure of the catalytic domain by molecular docking. In the docked structure L-Phe binds to the enzyme through interactions with Arg270, Ser349 and Trp326. The mode of coordination of Glu330 to the iron moiety seems to determine the amino acid substrate specificity in PAH and in the homologous enzyme tyrosine hydroxylase. The pterin ring of BH2 pi-stacks with Phe254, and the N3 and the amine group at C2 hydrogen bond with the carboxylic group of Glu286. The ring also establishes specific contacts with His264 and Leu249. The distance between the O4 atom of BH2 and the iron (2.6(+/-0.3) A) is compatible with coordination, a finding that is important for the understanding of the mechanism of the enzyme. The hydroxyl groups in the side-chain at C6 hydrogen bond with the carbonyl group of Ala322 and the hydroxyl group of Ser251, an interaction that seems to have implications for the regulation of the enzyme by substrate and cofactor. Some frequent mutations causing PKU are located at residues involved in substrate and cofactor binding. The sites for hydroxylation, C4 in L-Phe and C4a in the pterin are located at a distance of 4.2 and 4.3 A from the iron moiety, respectively, and at 6.3 A from each other. These distances are adequate for the intercalation of iron-coordinated molecular oxygen, in agreement with a mechanistic role of the iron moiety both in the binding and activation of dioxygen and in the hydroxylation reaction.  相似文献   

20.
Recently two alternative mechanisms have been put forward for the inhibition of tyrosinase by 6R-l-erythro 5,6,7,8-tetrahydrobiopterin (6BH(4)). Initially allosteric uncompetitive inhibition was demonstrated due to 1:1 binding of 10(-6)M 6BH(4) to a specific domain 28 amino acids away from the Cu(A) active site of the enzyme. Alternatively it was then shown that 10(-3)M 6BH(4) inhibit the reaction by the reduction of the product dopaquinone back to l-dopa. In the study presented herein we have used two structural analogues of 6BH(4) (i.e., 6,7-(R,S)-dimethyl tetrahydrobiopterin and 6-(R,S)-tetrahydromonapterin) confirming classical uncompetitive inhibition due to specific binding of the pyrimidine ring of the pterin moiety to the regulatory domain on tyrosinase. Under these conditions there was no reduction of l-dopaquinone back to l-dopa by both cofactor analogues. Inhibition of tyrosinase by 6BH(4) occurs in the concentration range of 10(-6)M after preactivation with l-tyrosine and this mechanism uncouples the enzyme reaction producing H(2)O(2) from O(2). Moreover, a direct oxidation of 6BH(4) to 7,8-dihydrobiopterin by tyrosinase in the absence of the substrate l-tyrosine was demonstrated. The enzyme was activated by low concentrations of H(2)O(2) (<0.3 x 10(-3)M), but deactivated at concentrations in the range 0.5-5.0 x 10(-3)M. In summary, our results confirm a major role for 6BH(4) in the regulation of human pigmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号