首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomic analysis of rice leaf sheath during drought stress   总被引:8,自引:0,他引:8  
Drought is one of the most severe limitations on the productivity of rainfed lowland and upland rice. To investigate the initial response of rice to drought stress, changes in protein expression were analyzed using a proteomic approach. Two-week-old rice seedlings were exposed to drought conditions from 2 to 6 days, and proteins were extracted from leaf sheaths, separated by two-dimensional polyacrylamide gel electrophoresis and stained with Coomassie brilliant blue. After drought stress for 2 to 6 days, 10 proteins increased in abundance and the level of 2 proteins decreased. The functional categories of these proteins were identified as defense, energy, metabolism, cell structure, and signal transduction. In addition to drought stress, accumulations of protein were analyzed under several different stress conditions. The levels of an actin depolymerizing factor, a light harvesting complex chain II, a superoxidase dismutase and a salt-induced protein were changed by drought and osmotic stresses, but not cold or salt stresses, or abscisic acid treatment. The effect of drought stress on protein in the leaf sheaths of drought-tolerant rice cultivar was also analyzed. The light harvesting complex chain II and the actin depolymerizing factor were present at high levels in a drought-tolerant rice cultivar before stress application. With drought stress, actin depolymerizing factor was expressed in leaf blades, leaf sheaths, and roots. These results suggest that actin depolymerizing factor is one of the target proteins induced by drought stress.  相似文献   

2.
Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA3 were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA3 treatment. ASR5 out of these six proteins was significantly regulated by GA3 at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA3, these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.  相似文献   

3.
Post-translational modifications such as glycosylation are important for changing the properties and functions of proteins. To analyze the importance of glycosylation during cold stress in rice, a proteomics approach was used. Proteins extracted from the basal part of rice leaf sheaths were separated by two-dimensional polyacrylamide gel electrophoresis, and subjected to lectin blot analysis using concanavalin A. From a total of 250 detected proteins, 22 reacted with the lectin, suggesting that they were N-glycosylated proteins. To determine how N-glycosylation of these proteins is affected by cold stress, rice seedlings were incubated at 5°C for 48 h, and proteins extracted from the basal parts of leaf sheaths were analyzed by the lectin blot assay. Cold stress changed the reactivity toward the lectin for 12 of the 22 glycoproteins. The identity of the 12 proteins was determined by protein sequencing and mass spectrometry with the majority of these glycoproteins being categorized as involved in energy production. Furthermore, calreticulin, one of the 12 glycoproteins, was also phosphorylated as a result of cold stress. These results indicate that cold stress of the basal parts of rice leaf sheaths changes the glycosylation and phosphorylation profiles of calreticulin, a key protein that regulates the quality control of other proteins.  相似文献   

4.
Komatsu S  Jan A  Koga Y 《Amino acids》2009,36(1):137-146
Calreticulin (CRT) is a major calcium-sequestering protein in the endoplasmic reticulum and has been implicated in a variety of cellular functions. To analyze the function of CRT in rice, a yeast two-hybrid protein interaction assay was used for identifying interacting proteins. Fourteen of 17 interacting cDNA clones found coded for a novel histidine- and alanine-rich protein (OsHARP) of 342 amino acid residues. The mRNA expression level of OsHARP was up-regulated in rice seedlings treated with gibberellin (GA), but not ABA and showed a similar pattern as OsCRT mRNA. Rice plants transformed with the OsHARP promoter-GUS construct showed GUS staining in the basal parts of leaf sheaths, and although GUS activity increased when treated with GA3, it was not as high an increase as when mRNA was analyzed. To elucidate the role of OsHARP in leaf sheath elongation, antisense OsHARP transgenic rice lines were constructed. The antisense OsHARP transgenic rice plants were consistently shorter than the vector control under normal conditions. To examine whether OsHARP expression would affect other proteins, basal leaf sheaths from antisense OsHARP transgenic rice plants were analyzed using proteomic techniques. In antisense transgenic-rice OsHARP plants, OsCRT was down-regulated and the levels of 20 other proteins were changed compared to the pattern of the vector control. These results signify an important role of HARP in rice leaf sheath cell division or elongation and suggest that CRT may interact with HARP during certain stages of development.  相似文献   

5.
6.
Calcium is a ubiquitous signaling molecule and changes in cytosolic calcium concentration are involved in plant responses to various stimuli. The rice calcium-dependent protein kinase 13 (CDPK13) and calreticulin interacting protein 1 (CRTintP1) have previously been reported to be involved in cold stress response in rice. In this study, rice lines transformed with sense CDPK13 or CRTintP1 constructs were produced and used to investigate the function of these proteins. When the plants were incubated at 5°C for 3 days, leaf blades of both the sense transgenic and vector control rice plants became wilted and curled. When the plants were transferred back to non-stress conditions after cold treatment, the leaf blades died, but the sheaths remained green in the sense transgenic rice plants. Expression of CDPK13 or CRTintP1 was further examined in several rice varieties including cold-tolerant rice varieties. Accumulation of these proteins in the cold-tolerant rice variety was higher than that in rice varieties that are intermediate in their cold tolerance. To examine whether over-expression of CDPK13 and CRTintP1 would have any effect on the proteins or not, sense transgenic rice plants were analyzed using proteomics. The 2D-PAGE profiles of proteins from the vector control were compared with those of the sense transgenic rice plants. Two of the proteins that differed between these lines were calreticulins. The results suggest that CDPK13, calreticulin and CRTintP1 might be important signaling components for response to cold stress in rice.  相似文献   

7.
Salinity and drought tolerance of mannitol-accumulating transgenic tobacco   总被引:8,自引:1,他引:7  
Tobacco plants (Nicotiana tabacum L.) were transformed with a mannitol-1-phosphate dehydrogenase gene resulting in mannitol accumulation. Experiments were conducted to determine whether mannitol provides salt and/or drought stress protection through osmotic adjustment. Non-stressed transgenic plants were 20–25% smaller than non-stressed, non-transformed (wild-type) plants in both salinity and drought experiments. However, salt stress reduced dry weight in wild-type plants by 44%, but did not reduce the dry weight of transgenic plants. Transgenic plants adjusted osmotically by 0.57 MPa, whereas wild-type plants did not adjust osmotically in response to salt stress. Calculations of solute contribution to osmotic adjustment showed that mannitol contributed only 0-003-0-004 MPa to the 0.2 MPa difference in full turgor osmotic potential (πo) between salt-stressed transgenic and wild-type plants. Assuming a cytoplasmic location for mannitol and that the cytoplasm constituted 5% of the total water volume, mannitol accounted for only 30–40% of the change in πo of the cytoplasm. Inositol, a naturally occurring polyol in tobacco, accumulated in response to salt stress in both transgenic and wild-type plants, and was 3-fold more abundant than mannitol in transgenic plants. Drought stress reduced the leaf relative water content, leaf expansion, and dry weight of transgenic and wild-type plants. However, πo was not significantly reduced by drought stress in transgenic or wild-type plants, despite an increase in non-structural carbohydrates and mannitol in droughted plants. We conclude that (1) mannitol was a relatively minor osmolyte in transgenic tobacco, but may have indirectly enhanced osmotic adjustment and salt tolerance; (2) inositol cannot substitute for mannitol in this role; (3) slower growth of the transgenic plants, and not the presence of mannitol per se, may have been the cause of greater salt tolerance, and (4) mannitol accumulation was enhanced by drought stress but did not affect πo or drought tolerance.  相似文献   

8.
9.
10.

Background and Aims

The effect of environmental factors on the regulation of aerenchyma formation in rice roots has been discussed for a long time, because aerenchyma is constitutively formed under aerated conditions. To elucidate this problem, a unique method has been developed that enables sensitive detection of differences in the development of aerenchyma under two different environmental conditions. The method is tested to determine whether aerenchyma development in rice roots is affected by osmotic stress.

Methods

To examine aerenchyma formation both with and without mannitol treatment in the same root, germinating rice (Oryza sativa) caryopses were sandwiched between two agar slabs, one of which contained 270 mm of mannitol. The roots were grown touching both slabs and were thereby exposed unilaterally to osmotic stress. As a non-invasive approach, refraction contrast X-ray computed tomography (CT) using a third-generation synchrotron facility, SPring-8 (Super photon ring 8 GeV, Japan Synchrotron Radiation Research Institute), was used to visualize the three-dimensional (3-D) intact structure of aerenchyma and its formation in situ in rice roots. The effects of unilateral mannitol treatment on the development of aerenchyma were quantitatively examined using conventional light microscopy.

Key Results

Structural continuity of aerenchyma was clearly visualized in 3-D in the primary root of rice and in situ using X-ray CT. Light microscopy and X-ray CT showed that the development of aerenchyma was promoted on the mannitol-treated side of the root. Detailed light microscopic analysis of cross-sections cut along the root axis from the tip to the basal region demonstrated that aerenchyma developed significantly closer to the root tip on the mannitol-treated side of the root.

Conclusions

Continuity of the aerenchyma along the rice root axis was morphologically demonstrated using X-ray CT. By using this ‘sandwich’ method it was shown that mannitol promoted aerenchyma formation in the primary roots of rice.  相似文献   

11.
Following the idea of partial root-zone drying(PRD)in crop cultivation,the morphological and physiological responses to partial root osmotic stress(PROS)and whole root osmotic stress(WROS)were investigated in rice.WROS caused stress symptoms like leaf rolling and membrane leakage.PROS stimulated stress signals,but did not cause severe leaf damage.By proteomic analysis,a total of 58 proteins showed differential expression after one or both treatments,and functional classification of these proteins suggests that stress signals regulate photosynthesis,carbohydrate and energy metabolism.Two other proteins(anthranilate synthase and submergence-induced nickel-binding protein)were upregulated only in the PROS plants,indicating their important roles in stress resistance.Additionally,more enzymes were involved in stress defense,redox homeostasis,lignin and ethylene synthesis in WROS leaves,suggesting a more comprehensive regulatory mechanism induced by osmotic stress.This study provides new insights into the complex molecular networks within plant leaves involved in the adaptation to osmotic stress and stress signals.  相似文献   

12.
Proteomic analysis of rice seedlings during cold stress   总被引:4,自引:0,他引:4  
Hashimoto M  Komatsu S 《Proteomics》2007,7(8):1293-1302
Low temperature is one of the important environmental changes that affect plant growth and agricultural production. To investigate the responses of rice to cold stress, changes in protein expression were analyzed using a proteomic approach. Two-week-old rice seedlings were exposed to 5 degrees C for 48 h, then total crude proteins were extracted from leaf blades, leaf sheaths and roots, separated by 2-DE and stained with CBB. Of the 250-400 protein spots from each organ, 39 proteins changed in abundance after cold stress, with 19 proteins increasing, and 20 proteins decreasing. In leaf blades, it was difficult to detect the changes in stress-responsive proteins due to the presence of an abundant protein, ribulose bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU), which accounted for about 50% of the total proteins. To overcome this problem, an antibody-affinity column was prepared to trap RuBisCO LSU, and the remaining proteins in the flow through from the column were subsequently separated using 2-DE. As a result, slight changes in stress responsive proteins were clearly displayed, and four proteins were newly detected after cold stress. From identified proteins, it was concluded that proteins related to energy metabolism were up-regulated, and defense-related proteins were down-regulated in leaf blades, by cold stress. These results suggest that energy production is activated in the chilling environment; furthermore, stress-related proteins are rapidly up-regulated, while defense-related proteins disappear, under long-term cold stress.  相似文献   

13.
14.
Abstract

Oxalic acid (1 mM) when applied as a foliar spray to rice plants induced resistance to challenge infection with Rhizoctonia solani, the rice sheath blight pathogen. Maximum reduction in sheath blight incidence was observed when the plants were sprayed with oxalic acid three days before inoculation with the fungus. The biochemical alterations in rice plants treated with oxalic acid was also investigated. When rice plants were treated with oxalic acid, a two-fold increase in phenolic content in leaf sheaths was recorded three days after treatment. Phenylalanine ammonia-lyase and peroxidase activities increased significantly starting from two days after treatment. Peroxidase (PO) isozyme analysis indicated that PO-3 and PO-4 were induced two days after treatment with oxalic acid. Western blot analysis revealed that two chitinases (28 and 35 kDa) and two β-1,3-glucanases (30 and 32 kDa) were strongly induced in rice sheaths four to six days after treatment with oxalic acid. Immunoblot analysis of protein extracts from oxalic acid-treated plants demonstrated the induction of a 23 kDa thaumatin-like protein (TLP) cross-reacting with bean TLP antibody. These results suggest that the enhanced activities of defense enzymes and defense-related compounds in oxalic acid-treated rice plants may contribute to resistance against R. solani.  相似文献   

15.
Summary Oryza sativa grown in flooded soil were transferred to water culture solution and acetylene reduction activities (ARA) of intact plants and rootless plants were measured for 5 h. Relative rate of ARA associated with the rootless wetland rice plant as compared with an intact plant varied from 8 to 100 percent, depending on the growth stage and varieties of rice and highest at the early stage (3 weeks after transplanting) for all varieties tested (IR26, Latisail, Khao Lo, and JBS236). ARA of shoots was associated with basal parts of the shoots about 3 cm from the base of wetland cultivated rice andOryza australiensis. Phyllospheric ARA was negligible except for senescent outer leaf sheaths. Microaerophilic N2-fixing bacteria also inhabited basal parts of shoots (outer leaf sheaths and stems) of wetland rice. These findings suggest that N2-fixation is partly associated with the shoots of wetland rice plants.  相似文献   

16.
17.
18.
19.
Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.  相似文献   

20.
对一水稻cDNA 克隆(R1908) 的分析表明, 其可能编码水稻酰基辅酶A 结合蛋白(acylCoAbinding protein,ACBP)。Southern 杂交显示水稻( Oryza sativa L.) 基因组中仅有一个该基因的拷贝。Northern 分析表明水稻的ACBP基因在水稻的根、茎、叶、叶鞘、黄化苗和幼穗中皆表达,而以黄化苗的绿苗叶鞘中的表达强度高于绿苗叶片。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号