首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of phosphonic acid analogues of 2-benzylsuccinate were tested as inhibitors of carboxypeptidase A. The most potent of these, (2RS)-2-benzyl-3-phosphonopropionic acid, had a Ki of 0.22 +/- 0.05 microM, equipotent to (2RS)-2-benzylsuccinate and thus one of the most potent reversible inhibitors known for this enzyme. Lengthening by one methylene group to (2RS)-2-benzyl-4-phosphonobutyric acid increased the Ki to 370 +/- 60 microM. The monoethyl ester (2RS)-2-benzyl-3-(O-ethylphosphono)propionic acid was nearly as potent as (2RS)-2-benzyl-3-phosphonopropionic acid, with a Ki of 0.72 +/- 0.3 microM. The sulphur analogue of the monoethyl ester, 2-ambo-P-ambo-2-benzyl-3-(O-ethylthiophosphono)propionic acid, had a Ki of 2.1 +/- 0.6 microM, nearly as active as (2RS)-2-benzyl-3-(O-ethylphosphono)propionic acid. These phosphonic acids and esters could be considered to be multisubstrate inhibitors of carboxypeptidase A by virtue of their structural analogy with 2-benzylsuccinate. Alternatively, the tetrahedral hybridization at the phosphorus atom suggests that they could be mimicking a tetrahedral transition state for the enzyme-catalysed hydrolysis of substrate.  相似文献   

2.
2-Substituted 3-nitropropanoic acids were designed and synthesized as inhibitors against carboxypeptidase A (CPA). (R)-2-Benzyl- 3-nitropropanoic acid showed a potent inhibition against CPA (K(i)=0.15 microM). X-ray crystallography discloses that the nitro group well mimics the transition state occurred in the hydrolysis catalyzed by CPA, that is, an O,O'-bidentate coordination to the zinc ion and the two respective hydrogen bonds with Glu-270 and Arg-127. Because the nitro group is a planar species, we proposed (R)-2-benzyl-3-nitropropanoic acid as a pseudo-transition-state analog inhibitor against CPA.  相似文献   

3.
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding.  相似文献   

4.
D Grobelny  U B Goli  R E Galardy 《Biochemistry》1985,24(26):7612-7617
The Ki's of three peptide ketone and three peptide alcohol inhibitors of carboxypeptidase A are compared with Ki's of their respective isosteric peptide substrates, N alpha-benzoyl-L-phenylalanine, N alpha-benzoylglycyl-L-phenylalanine, and N alpha-carbobenzoxyglycylglycyl-L-phenylalanine. For the isosteric ketone analogues of these substrates, the respective Ki's are as follows: (2RS)-2-benzyl-4-(3-methoxyphenyl)-4-oxobutanoic acid, 180 +/- 40 microM; (2RS)-5-benzamido-2-benzyl-4-oxopentanoic acid (V), 48 +/- 7 microM; (2RS)-2-benzyl-5-(carbobenzoxyglycinamido)-4-oxopentanoic acid (IX), 9 +/- 0.1 microM. For the alcohols derived by reduction of each of these ketones, Ki's are as follows: (2RS,4RS)-2-benzyl-4-(3-methoxyphenyl)-4-hydroxybutanoic acid, 190 +/- 10 microM; (2RS,4RS)-5-benzamido-2-benzyl-4-hydroxybutanoic acid (IV), 160 +/- 62 microM; (2RS,4RS)-2-benzyl-5-(carbobenzoxyglycinamido)-4-hy droxypentanoic acid (XI), 600 +/- 100 microM. Ki values for the competitive peptide ketone inhibitors decrease with increasing peptide chain length. This is consistent with the possibility of increased binding interaction between inhibitor and enzyme by simple occupation of additional binding subsites by adding more amino acid residues to the inhibitor. In contrast, the Ki values of the alcohols (competitive or mixed inhibition) increased or remain essentially unchanged with increasing chain length. Increasing the chain length of ketone inhibitor V to give IX decreases Ki by one-fifth. The Ki of ketone IX is also less than 1/30th the Ki of its isosteric peptide and almost 1/70th that of its isosteric alcohol, XI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In our studies with purified soluble guanylate cyclase from rat lung, we have tested a number of guanosine 5'-triphosphate (GTP) analogues as substrates and inhibitors, 5'-Guanylylimidodiphosphate (GMP-P(NH)P), guanylyl (beta, gamma-methylene) diphosphate (GMP-P(CH2)P), and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) were found to be substrates for guanylate cyclase. GTP gamma S supported cyclic GMP formation at 20 or 75% of the rate seen with Mn2+-GTP and Mg2+-GTP, respectively. GMP-P(NH)P and GMP P(CH2)P supported cyclic GMP formation at 10-20% of the GTP rate with either cation cofactor. These analogues were found to have multiple Km values; one Km value was similar to GTP (150 microM with Mg2+, 20-70 microM with Mn2+), but an additional high affinity catalytic site (3 microM) was also observed. Guanosine tetraphosphate (Ki = 10 microM), adenosine triphosphate (Ki = 9 microM) and the 2'3'-dialdehyde derivative of GTP (dial GTP) (Ki = 1 microM) were not good substrates for the enzyme; however, they were potent competitive inhibitors. These GTP analogues will be useful tools for the study of GTP binding sites on guanylate cyclase and they may also help elucidate the effects of free radicals and other agents on guanylate cyclase regulation.  相似文献   

6.
Various fatty acids were studied in vitro as inhibitors of pure hog kidney D-amino acid oxidase by means of a spectrophotometric peroxidase-coupling method using D-methionine as a substrate. All the fatty acids tested behaved as substrate-competitive inhibitors of the enzyme. The affinity of the saturated aliphatic acids for D-amino acid oxidase decreased from pentanoate (5:0; Ki = 220 microM) to laurate (12:0; Ki = 675 microM), then rose to a maximum with stearate (18:0; Ki = 36 microM), suggesting the presence of a site in the active center of the enzyme that accepts long-chain fatty acid alkyl groups. Unsaturation did not further increase the affinity of the fatty acid for this binding site.  相似文献   

7.
Based on the proposal that ribonucleases cleave the RNA phosphodiester bond with a mechanism involving pentacovalent phosphorous as transition state, complexes of guanosine and inosine with vanadate-(IV, V), molybdate-(VI), tungstate-(VI), chromate-(VI) and hexacyanochromate-(III) were synthesized and probed as inhibitors of recombinant ribonuclease T1, obtained from an E. coli. overproducing strain. The apparent dissociation constants of these inhibitors and RNase T1, as determined by Michaelis-Menten kinetics, vary between 0.5-0.9 microM and indicate very strong binding, 100- to 1000-fold stronger than the binding of guanosine (Kd = 545 microM) and inosine (Kd = 780 microM), and 50-100-fold stronger than the binding of the product 3' GMP (Kd = 55 microM). Therefore the synthesized inhibitors may be considered as genuine transition state analogs for the enzyme.  相似文献   

8.
With the use of a continuous spectrophotometric assay and initial rates determined by the method of Waley [Biochem. J. (1981) 193, 1009-1012] methotrexate was found to be a non-competitive inhibitor, with Ki(intercept) = 72 microM and Ki(slope) = 41 microM, of 5-aminoimidazole-4-carboxamide ribotide transformylase, whereas a polyglutamate of methotrexate containing three gamma-linked glutamate residues was a competitive inhibitor, with Ki = 3.15 microM. Pentaglutamates of folic acid and 10-formylfolic acid were also competitive inhibitors of the transformylase, with Ki values of 0.088 and 1.37 microM respectively. Unexpectedly, the pentaglutamate of 10-formyldihydrofolic acid was a good substrate for the transformylase, with a Km of 0.51 microM and a relative Vmax. of 0.72, which compared favourably with a Km of 0.23 microM and relative Vmax. of 1.0 for the tetrahydro analogue. An analysis of the progress curve of the transformylase-catalysed reaction with the above dihydro coenzyme revealed that the pentaglutamate of dihydrofolic acid was a competitive product inhibitor, with Ki = 0.14 microM. The continuous spectrophotometric assay for adenosine deaminase based on change in the absorbance at 265 nm was shown to be valid with adenosine concentrations above 100 microM, which contradicts a previous report [Murphy, Baker, Behling & Turner (1982) Anal. Biochem. 122, 328-337] that this assay was invalid above this concentration. With the spectrophotometric assay, 5-aminoimidazole-4-carboxamide riboside was found to be a competitive inhibitor of adenosine deaminase, with (Ki = 362 microM), whereas the ribotide was a competitive inhibitor of 5'-adenylate deaminase, with Ki = 1.01 mM. Methotrexate treatment of susceptible cells results in (1) its conversion into polyglutamates, (2) the accumulation of oxidized folate polyglutamates, and (3) the accumulation of 5-aminoimidazole-4-carboxamide riboside and ribotide. The above metabolic events may be integral elements producing the cytotoxic effect of this drug by (1) producing tighter binding of methotrexate to folate-dependent enzymes, (2) producing inhibitors of folate-dependent enzymes from their tetrahydrofolate coenzymes, and (3) trapping toxic amounts of adenine nucleosides and nucleotides as a result of inhibition of adenosine deaminase and 5'-adenylate deaminase respectively.  相似文献   

9.
The cholesterol esterase-catalyzed hydrolysis of the water-soluble substrate p-nitrophenyl butyrate occurs via an acylenzyme mechanism, and is competitively inhibited by boronic acid transition state analog inhibitors. Accordingly, we undertook to dimensionally map the enzyme's active site via synthesis and characterization of a series of n-alkyl boronic acid inhibitors. The most potent of these is n-hexaneboronic acid, with a Ki = 13 +/- 1 microM, since inhibitor potency declines for both longer and shorter boronic acids. No inhibition is observed for methaneboronic acid and n-octaneboronic acid inhibits poorly, with a Ki of 7 mM. These results indicate that the ability of the enzyme to form tight complexes with boron-containing transition state analog inhibitors is sensitive to alkyl chain length. The trend in inhibitor potency is discussed in terms of substrate specificity of and transition state stabilization by cholesterol esterase, and has important implications for the design of optimal reversible inhibitors of the enzyme.  相似文献   

10.
A number of compounds that appear to be analogues of the aci form of the normal carbanion intermediate are good inhibitors of yeast enolase. These include (3-hydroxy-2-nitropropyl)phosphonate (I), the ionized (pK = 8.1) nitronate form of which in the presence of 5 mM Mg2+ has a Ki of 6 nM, (nitroethyl)phosphonate (III) (pK = 8.5; Ki of the nitronate in the presence of 5 mM Mg2+ = 1 microM), phosphonoacetohydroxamate (IV) (pK = 10.2; Ki with saturating Mg2+ for the ionized form = 15 pM), and (phosphonoethyl)nitrolate (VII) (Ki at 1 mM Mg2+ = 14 nM). The oxime of phosphonopyruvate (VI) has a pH-independent Ki of 75 microM. I, IV, VI, and VII are slow binding inhibitors. All of these compounds are trigonal at the position analogous to C-2 of 2-phosphonoglycerate and contain a phosphono group, but a negatively charged metal ligand at the position isosteric with the hydroxyl attached to C-3 of 2-phosphoglycerate (as in IV) appears to contribute more to binding than a nitro group isosteric with the carboxyl of 2-phosphoglycerate (I and III). These data support the carbanion mechanism for enolase and suggest that the 3-hydroxyl of 2-phosphoglycerate is directly coordinated to Mg2+ prior to being eliminated to give phosphoenolpyruvate.  相似文献   

11.
The aldehyde (RS)-2-benzyl-4-oxobutanoic acid, which is 25% hydrated at pH 7.5, has recently been shown to be a strong reversible competitive inhibitor of carboxypeptidase A [Ki = 0.48 nM; Galardy, R. E., & Kortylewicz, Z. P. (1984) Biochemistry 23, 2083-2087]. The ketone analogue of this aldehyde (RS)-2-benzyl-4-oxopentanoic acid (IV) is not detectably hydrated under the same conditions and is 1500-fold less potent (Ki = 730 microM). The ketone homologue (RS)-2-benzyl-5-oxohexanoic acid (XIII) is also a weak inhibitor (Ki = 1.3 mM). The alpha-monobrominated derivatives of these two ketones are, however, strong competitive inhibitors with Ki's of 0.57 microM and 1.3 microM, respectively. Oximes derived from the aldehyde, the ketones IV and XIII, and a homologue of the aldehyde are weak inhibitors with Ki's ranging from 480 to 7900 microM. The inhibition of carboxypeptidase A by the alpha-monobrominated ketones is reversible and independent of the time (up to 6 h) of incubation of enzyme and inhibitor together. Bromoacetone at a concentration of 30 mM does not inhibit carboxypeptidase A. Incubation of an equimolar mixture of 2-benzyl-4-bromo-5-oxohexanoic acid (XV) and enzyme for 1 h led to the recovery of 82% of XV, demonstrating that it is the major species reversibly bound during assay of inhibition. Taken together, these results indicate that tight binding of carbonyl inhibitors to carboxypeptidase A requires specific binding of inhibitor functional groups such as benzyl and an electrophilic carbonyl carbon such as that of an alpha-bromo ketone or aliphatic aldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Whereas sitosterol and 24(28)-methylene cycloartanol were competitive inhibitors (with Ki = 26 microM and 14 microM, respectively), 24(R,S)-25-epiminolanosterol was found to be a potent non-competitive inhibitor (Ki = 3.0 nM) of the S-adenosyl-L-methionine-C-24 methyl transferase from sunflower embryos. Because the ground state analog, 24(R,S)-oxidolanosterol, failed to inhibit the catalysis and 25-azalanosterol inhibited the catalysis with a Ki of 30 nM we conclude that the aziridine functions in a manner similar to the azasteriod (Rahier, A., et al., J. Biol. Chem. (1984) 259, 15215) as a transition state analog mimicking the carbonium intermediate found in the normal transmethylation reaction. Additionally, we observed that the aziridine inhibited cycloartenol metabolism (the preferred substrate for transmethylation) in cultured sunflower cells and cell growth.  相似文献   

13.
Using N-acetylglucosaminono-1,5-lactone (1) as the reference, the inhibitory activity of its (formal) derivatives N-acetylglucosaminono-1,5-lactone oxime (2) and N-acetylglucosaminono-1,5-lactone O-(phenylcarbamoyl)-oxime (3) was tested against beta-N-acetylglucosaminidase of different origins (animal, plant, fungus). Displaying inhibition constants of 0.45 microM and 0.62 microM, for the animal and plant enzyme, respectively, the simple oxime 2 was about equally potent as the parent lactone 1, and 50-400 times more efficient than two recently described new beta-N-acetylglucosaminidase inhibitors. The (phenylcarbamoyl)oxime 3 performed even better, particularly with the fungal enzyme (Ki = 40 nM), i.e. was about 350 times more potent than the lactone. In all cases competitive inhibition was observed with 4-nitrophenyl-beta-N-acetylglucosaminide as the substrate. With Ki/Km ratios up to 3300 for 2 and 13,600 for 3, the mode of action of these novel inhibitors is probably that of transition state mimicry. Suggestions are made for their use as a tool in biological research.  相似文献   

14.
Prolyl endopeptidase cleaves peptide bonds on the carboxyl side of proline residues within a peptide chain. The enzyme readily degrades a number of neuropeptides including substance P, neurotensin, thyrotropin-releasing hormone, and luteinizing hormone-releasing hormone. The finding that the enzyme is inhibited by benzyloxycarbonyl-prolyl-proline, with a Ki of 50 microM, prompted the synthesis of benzyloxycarbonyl-prolyl-prolinal as a potential transition state analog inhibitor. Rabbit brain prolyl endopeptidase was purified to homogeneity for these studies. The aldehyde was found to be a remarkably potent inhibitor of prolyl endopeptidase with a Ki of 14 nM. This Ki is more than 3000 times lower than that of the corresponding acid or alcohol. By analogy with other transition state inhibitors, it can be assumed that binding of the prolinal residue to the S1 subsite and the formation of a hemiacetal with the active serine of the enzyme greatly contribute to the potency of inhibition. The specificity of the inhibitor is indicated by the finding that a variety of proteases were not affected at concentrations 150 times greater than the Ki for prolyl endopeptidase. The data indicate that benzyloxycarbonyl-prolyl-prolinal is a specific and potent inhibitor of prolyl endopeptidase and that consequently it should be of value in in vivo studies on the physiological role of the enzyme.  相似文献   

15.
Kinetic analysis has shown that isoquinoline, papaverine and berberine act as reversible competitive inhibitors to muscle lactate dehydrogenase and mitochondrial malate dehydrogenase with respect to the coenzyme NADH. The inhibitor constants Ki vary from 7.5 microM and 12.6 microM berberine interaction with malate dehydrogenase and lactate dehydrogenase respectively to 91.4 microM and 196.4 microM with papaverine action on these two enzymes. Isoquinoline was a poor inhibitor with Ki values of 200 microM (MDH) to 425 microM (LDH). No inhibition was observed for both enzymes in terms of their respective second substrate (oxaloacetic acid - malate dehydrogenase; pyruvate - lactate dehydrogenase). A fluorimetric analysis of the binding of the three alkaloids show that the dissociation constants (Kd) for malate dehydrogenase are 2.8 microM (berberine), 46 microM (papaverine) and 86 microM (isoquinoline); the corresponding values for lactate dehydrogenase are 3.1 microM, 52 microM and 114 microM. In all cases the number of binding sites averaged at 2 (MDH) and 4 (LDH). The binding of the alkaloids takes place at sites close to the coenzyme binding site. No conformational non equivalence of subunits is evident.  相似文献   

16.
B Imperiali  R H Abeles 《Biochemistry》1987,26(14):4474-4477
We have synthesized inhibitors of chymotrypsin, based on fluoromethyl ketones, that bind at S and S' subsites. "Small" inhibitors of serine proteases, which have previously been synthesized, only interact with S subsites. The parent compound is Ac-Leu-ambo-Phe-CF2H (1) (Ki = 25 X 10(-6) M). This inhibitor was modified by successively replacing H of the -CF2H group by -CH2CH2CONHCH3, (4), -CH2CH2CONH-Leu-NHMe (5), -CH2CH2CONH-Leu-Val-OEt (6), and -CH2CH2CONH-Leu-Arg-OMe (7). Corresponding Ki values are 7.8 (4), 0.23 (5), 0.21 (6), and 0.014 (7) microM. Extending 5 to 6 by addition of Val-OEt at P3' does not decrease Ki. In contrast, extension of 5 to 7 by incorporating Arg-OMe at P3' decreases Ki approximately 15-fold, suggesting interaction between Arg and the S3' subsite but no corresponding interaction at that subsite with Val. These results are in accordance with results obtained with the homologous family of avian ovomucoid third domain proteins. Proteins with Arg at the P3' position show highly favorable interactions with the protease at the S3' subsite [Park, S. J. (1985) Ph.D. Thesis, Purdue University; M. Laskowski, Jr., personal communication]. These results establish that incorporation of residues which interact with S' subsites significantly increases the efficacy of inhibitors and that valuable information concerning the most effective amino acid composition of small inhibitors can be obtained from the amino acid sequence of protein inhibitors.  相似文献   

17.
K Brady  R H Abeles 《Biochemistry》1990,29(33):7608-7617
A series of seven peptidyl trifluoromethyl ketone (TFK) inhibitors of chymotrypsin have been prepared which differ at the P1 and P2 subsites. Inhibition equilibria and kinetics of association and dissociation with chymotrypsin have been measured. The association rate of Ac-Phe-CF3 was measured at enzyme concentrations between 8 nM and 117 microM in order to examine the relation between the ketone/hydrate equilibrium of trifluoromethyl ketones and the "slow binding" by these inhibitors. The association rate decreases at high enzyme concentrations, indicating that TFK ketone is the reactive species and that conversion of TFK hydrate to ketone becomes rate limiting under these conditions. Inhibitors with hydrophobic side chains at P2 bind more tightly but more slowly to chymotrypsin, indicating that formation of van der Waals contacts between the P2 side chain and the His 57 and Ile 99 side chains of chymotrypsin is a relatively slow process. Inhibitor properties were compared to the Michaelis-Menten kinetic constants of a homologous series of peptide methyl ester and peptide amide substrates. Plots of log Ki vs log (kcat/Km) are linear with slopes of 0.65 +/- 0.2, indicating that these inhibitors are able to utilize 65% of the total binding energy between chymotrypsin and its hydrolytic transition state.  相似文献   

18.
N-(Hydroxyaminocarbonyl)phenylalanine (1) was designed rationally as a new type of inhibitor for carboxypeptidase A (CPA). The designed inhibitor was readily prepared from phenylalnine benzyl ester in two steps and evaluated to find that rac-1 inhibits CPA in a competitive fashion with the Ki value of 2.09 microM. Surprisingly, inhibitor 1 having the D-configuration is more potent (Ki = 1.54 microM) than its antipode by about 3-fold. A possible explanation for the stereochemistry observed in the inhibition of CPA with 1 is presented.  相似文献   

19.
A variety of amino acid and peptide amides have been shown to be inhibitors of dipeptidyl aminopeptidase. Among these compounds derivatives of strongly hydrophobic amino acids are the strongest inhibitors (Phe-NH2, Ki = 1.0 +/- 0.2 mM), while amides of basic amino acids were somewhat less effective (Lys-NH2, Ki = 36 +/- 3 mM). Short chain amino acid amides are notably weaker inhibitors (Gly-NH2, Ki = 293 +/- 50 mM). The interaction of the side chains of compounds with the enzyme appears to be at a site other than that at which the side chain of the amino-penultimate residue of the substrate interacts since the specificity of binding is different. Primary amines have been shown to inhibit, e.g., butylamine, Ki = 340 +/- 40 mM, and aromatic compounds have been shown to stimulate activity toward Gly-Gly-NH2 and Gly-Gly-OEt (phenol, 35% stimulation of activity at a 1:1 molar ratio with the substrate). The data suggest that inhibition involves binding at the site occupied by the free alpha-amino group and the N-terminal amino acid.  相似文献   

20.
Several Good buffers (MOPS, ACES, BES, HEPES, ADA, and PIPES) competitively inhibited both high-affinity and low-affinity [3H]gamma-aminobutyric acid receptor binding to rat brain synaptic membranes. The most potent inhibitor was MOPS, which had Ki values of 180 nM and 79 nM for the high- and low-affinity binding sites, respectively. HEPES had Ki values of 2.25 mM and 115 microM. The buffers had no appreciable effect on sodium-dependent GABA binding or on gamma-aminobutyrate aminotransferase activity. Surprisingly, the buffers were extremely ineffectual as inhibitors of either high- or low-affinity [3H]muscimol binding. Indeed, they were of the order of 10(5) times less effective in this case than against [3H]GABA binding. These results clearly show (a) that the use of such buffers as MOPS or HEPES should be avoided in studying the interaction of GABA with its receptor, and (b) the binding sites of [3H]GABA and [3H]muscimol are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号