首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intracellular aminopeptidase (EC 3.4.11.-) was purified from the extreme thermophilic archaebacterium, Sulfolobus solfataricus. The molecular weight of the native enzyme was about 320,000, as calculated by gel-filtration studies, and a subunit Mr of 80,000 was estimated by SDS-polyacrylamide gel electrophoresis. The temperature optimum of the enzyme was at 75 degrees C and the pH optimum was found to be 6.5. The aminopeptidase was highly active against the chromogenic substrates L-Leu-p-NA and L-Ala-p-NA. The enzyme was inhibited by EDTA, but the activity could be partially restored by removal of the EDTA and incubation with Co2+ or Mn2+. Bestatin, a typical inhibitor of aminopeptidase, fully inhibited the enzyme activity, but inhibitors of serine proteinases had no effect. Beside a high thermostability, the enzyme showed a remarkable stability against 6 M urea, organic solvents and acetonitrile.  相似文献   

2.
Fumarate hydratase (EC 4.2.1.2) from the extremely thermophilic archaeobacterium Solfolobus solfataricus has been purified to homogeneity by a rapid purification procedure using affinity chromatography and high-performance size-exclusion chromatography, and the enzyme's physical and biochemical properties have been determined. The native enzyme has a molecular mass of 170 kDa and is composed of identical subunits with a molecular mass of 45 kDa, thus indicating a tetrameric structure similar to fumarases isolated from other organisms. The enzyme was active at temperatures ranging from 40 degrees C to 90 degrees C, with a maximum activity at 85 degrees C. The pH optimum for generation of fumarate was found to be pH 8.0. The enzyme showed high stability to denaturation by heat and organic solvents.  相似文献   

3.
T Yoshimoto  S G Chao  Y Saito  I Imamura  H Wada  Y Inada 《Enzyme》1986,36(4):261-265
Escherichia coli tryptophanase was modified with 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine (activated PEG2, MW 5,000 x 2). The modified tryptophanase, in which approximately 43% of the total 120 amino groups and 38% of the total 16 sulfhydryl groups in the molecule were coupled, completely lost the immunoreactivity towards anti-tryptophanase serum from rabbit. Approximately 10% of the enzymic activity was retained. The modified enzyme showed the same physicochemical properties as the native enzyme: Km value for L-tryptophan (0.3 mmol/l), optimum pH (8.0) and optimum temperature (50 degrees C). The modified enzyme was more resistant than the native counterpart against proteolytic digestion with trypsin.  相似文献   

4.
Alanine aminotransferase (ALT) is used in clinical diagnostics, amino acid synthesis and in biosensors. Here we describe the stabilization of soluble porcine ALT by chemical modification with mono- and bis-imidates. The apparent transition temperatures (‘Tm’, the temperature where 50% of initial activity was lost in 10 min) for native and DMS-modified ALT were 46 and 56 °C respectively. The effects of water-miscible organic solvents (methanol, dimethylformamide, dimethylsulphoxide and 1,4-dioxane) on the activity/stability of native and modified forms were determined. In all systems studied, an abrupt decrease in ALT catalytic activity was observed on reaching a certain threshold concentration of the organic solvent. The modified derivatives were more organotolerant than native enzyme. Comparison of the apparent Vmax and Km for 2-oxoglutarate as substrate, determined in 10% (v/v) organic solvent, with the results of thermal inactivation studies showed that the solvents have different effects on ALT's catalytic parameters and on its conformational stability. At 35 °C with no organic solvent the dimethylsuberimidate (DMS)-modified derivative's half-life was 16 times greater than that for native enzyme; in 30% (v/v) solvent at 35 °C, the DMS-modified ALT's half-life was up to 4.6 times greater than native enzyme's. DMS-modified ALT was also more stable in urea and guanidine HCl, and its refolding was more noticeable, than that of native enzyme.  相似文献   

5.
We wish to report the attainment of the highest ever T(opt) by introducing approximately two aromatic rings through chemical modification of surface carboxyl groups in carboxymethylcellulase from Scopulariopsis sp. with concomitant decrease in V(max), K(m), and optimum pH! This extraordinary enhancement in thermophilicity of aniline-coupled CMCase (T(opt) = 122 degrees C) by a margin of 73 degrees C as compared with the native enzyme (T(opt) = 49 degrees C) is the highest reported for any mesophilic enzyme that has been modified either through chemical modification or site-directed mutagenesis. It is also reported for the first time that aniline coupled CMCase (ACC) is simultaneously thermostable in aqueous as well as water-miscible organic solvents. The T(opt) of native CMCase and ACC were 25 and 90 degrees C, respectively, in 40% (v/v) aqueous dioxan. The modified enzyme was also stabilized against irreversible thermal denaturation. Therefore, at 55 degrees C, ACC had a half-life of 136 min as compared with native CMCase whose half-life was only 5 min. We believe that the reasons for this elevated thermostability and thermophilicity are surface aromatic-aromatic interactions and aromatic interactions with the sugar backbone of the substrate, respectively.  相似文献   

6.
Chemical modification of lysine residues in Candida rugosa lipase (CRL) was carried out using five different functional ionic liquids, and about 15.4–25.0 % of the primary amino groups of lysine were modified. Enzymatic properties of the native and modified CRLs were investigated in olive oil hydrolysis reaction. Improved thermal stability, catalytic activity in organic solvents, and adaptability to temperature and pH changes were achieved compared with the native enzyme. CRL modified by [choline][H2PO4] showed the best results, bearing a maximum improvement of 16.7 % in terms of relative activity, 5.2-fold increase in thermostability (after incubation at 45 °C for 5 h), and 2.3-fold increase in activity in strong polar organic solvent (80 % dimethyl sulfoxide) compared with the native enzyme. The results of ultraviolet, circular dichroism and fluorescence spectroscopy suggested that the change of the secondary and tertiary structures of CRL caused by the chemical modification resulted in the enhancement of enzymatic performance. The modification of CRL with functional ionic liquids was proved to be a novel and efficient method for improving the enzymatic properties of CRL.  相似文献   

7.
A novel colanic acid-degrading enzyme was isolated from a mixed culture filtrate obtained by enrichment culturing of a compost sample using colanic acid as carbon source. The enzyme was partially purified resulting in a 17-fold increase in specific activity. Further purification by Native PAGE revealed that the enzyme is part of a high-molecular weight multi protein complex of at least six individual proteins. The enzyme showed a temperature optimum at 50 degrees C while after 5h at 50 degrees C and pH7 still 70% of the total activity was left. The pH optimum was found to be pH7. Analysis of the degradation products showed that the enzyme is a novel 1,4-beta-fucoside hydrolase that liberates repeating units of colanic acid with varying degrees of acetylation. Km and Vmax of the enzyme were determined against the native substrate as well as its de-O-acetylated and depyruvated forms. Compared to the native substrate the affinity of the enzyme for the modified substrates was much lower. However, for the de-O-acetylated sample a dramatic increase in catalytic efficiency was observed. The native form of the substrate showed substrate inhibition at high concentrations, probably due to the formation of nonproductive substrate complexes. Removal of the acetyl groups probably prevents this effect resulting in a higher catalytic efficiency.  相似文献   

8.
An extracellular nuclease from Rhizopus stolonifer (designated as nuclease Rsn) was purified to homogeneity by chromatography on DEAE-cellulose followed by Blue Sepharose. The M(r) of the purified enzyme determined by native PAGE was 67? omitted?000 and it is a tetramer and each protomer consists of two unidentical subunits of M(r) 21? omitted?000 and 13? omitted?000. It is an acidic protein with a pI of 4.2 and is not a glycoprotein. The purified enzyme showed an obligate requirement of divalent cations like Mg(2+), Mn(2+) and Co(2+) for its activity but is not a metalloprotein. The optimum pH of the enzyme was 7.0 and was not influenced by the type of metal ion used. Although, the optimum temperature of the enzyme for single stranded (ss) DNA hydrolysis in presence of all three metal ions and for double stranded (ds) DNA hydrolysis in presence of Mg(2+) was 40 degrees C, it showed higher optimum temperature (45 degrees C) for dsDNA hydrolysis in presence of Mn(2+) and Co(2+). Nuclease Rsn was inhibited by divalent cations like Zn(2+), Cu(2+) and Hg(2+), inorganic phosphate and pyrophosphate, low concentrations of SDS, guanidine hydrochloride and urea, organic solvents like dimethyl sulphoxide, dimethyl formamide and formamide but not by 3'- or 5'-mononucleotides. The studies on mode and mechanism of action showed that nuclease Rsn is an endonuclease and cleaves dsDNA through a single hit mechanism. The end products of both ssDNA and dsDNA hydrolysis were predominantly oligonucleotides ending in 3'-hydroxyl and 5'-phosphoryl termini. Moreover, the type of metal ion used did not influence the mode and mechanism of action of the enzyme.  相似文献   

9.
An extracellular alkaline lipase of a thermo tolerant Bacillus coagulans BTS-3 was immobilized onto glutaraldehyde activated Nylon-6 by covalent binding. Under optimum conditions, the immobilization yielded a protein loading of 228 microg/g of Nylon-6. Immobilized enzyme showed maximum activity at a temperature of 55 degrees C and pH 7.5. The enzyme was stable between pH 7.5-9.5. It retained 88% of its original activity at 55 degrees C for 2h and also retained 85% of its original activity after eight cycles of hydrolysis of p-NPP. Kinetic parameters Km and Vmax were found to be 4mM and 10 micromol/min/ml, respectively. The influence of organic solvents on the catalytic activity of immobilized enzyme was also evaluated. The bound lipase showed enhanced activity when exposed to n-heptane. The substrate specificity of immobilized enzyme revealed more efficient hydrolysis of higher carbon length (C-16) ester than other ones.  相似文献   

10.
The estA gene encoding a novel cytoplasmic carboxylesterase from Arthrobacter nitroguajacolicus Rü61a was expressed in Escherichia coli. Sequence analysis and secondary structure predictions suggested that EstA belongs to the family VIII esterases, which are related to class C beta-lactamases. The S-x-x-K motif that in beta-lactamases contains the catalytic nucleophile, and a putative active-site tyrosine residue are conserved in EstA. The native molecular mass of hexahistidine-tagged (His6) EstA, purified by metal chelate affinity chromatography, was estimated to be 95 kDa by gel filtration, whereas the His6EstA peptide has a calculated molecular mass of 42.1 kDa. The enzyme catalyzes the hydrolysis of short-chain phenylacyl esters and triglycerides, and shows weak activity toward 2-hydroxy- and 2-nitroacetanilide. Its catalytic activity was inhibited by the serine-specific effector phenylmethylsulfonyl fluoride, and by Cd2+ and Hg2+ ions. Maximum activity of His6EstA was observed at a pH of 9.5 and a temperature of 50 degrees C to 60 degrees C. The enzyme was fairly thermostable. After 19 days at 50 degrees C and after 24 hours at 60 degrees C, its residual relative esterase activity toward phenylacetate was still 53% and 30%, respectively. Exposure of His6EstA to buffer-solvent mixtures showed that the enzyme was inactivated by several high log P (hydrophobic) solvents, whereas it showed remarkable stability and activity in up to 30% (by volume) of polar (low log P) organic solvents such as dimethylsulfoxide, methanol, acetonitrile, acetone, and propanol.  相似文献   

11.
A metalloprotease secreted by the moderately halophilic bacterium Salinivibrio sp. strain AF-2004 when the culture reached the stationary growth phase. This enzyme was purified to homogeneity by acetone precipitation and subsequent Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography. The apparent molecular mass of the protease was 31 kDa by SDS-PAGE, whereas it was estimated as approximately 29 kDa by Sephacryl S-200 gel filtration. The purified protease had a specific activity of 116.8 mumol of tyrosine/min per mg protein on casein. The optimum temperature and salinity of the enzyme were at 55 degrees C and 0-0.5 M NaCl, although at salinities up to 4 M NaCl activity still remained. The protease was stable and had a broad pH profile (5.0-10.0) with an optimum of 8.5 for casein hydrolysis. The enzyme was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), Pefabloc SC, chymostatin and also EDTA, indicating that it belongs to the class of serine metalloproteases. The protease in solutions containing water-soluble organic solvents or alcohols was more stable than that in the absence of organic solvents. These characteristics make it an ideal choice for applications in industrial processes containing organic solvents and/or salts.  相似文献   

12.
We have found that the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 produced a thermostable esterase. We isolated and sequenced the esterase gene (est(Pc)) from strain VA1. est(Pc) consisted of 939 bp, corresponding to 313 amino acid residues with a molecular mass of 34,354 Da. As est(Pc) showed significant identity (30%) to mammalian hormone-sensitive lipases (HSLs), esterase of P. calidifontis (Est) could be regarded as a new member of the HSL family. Activity levels of the enzyme were comparable or higher than those of previously reported enzymes not only at high temperature (6,410 U/mg at 90 degrees C), but also at ambient temperature (1,050 U/mg at 30 degrees C). The enzyme displayed extremely high thermostability and was also stable after incubation with various water-miscible organic solvents at a concentration of 80%. The enzyme also exhibited activity in the presence of organic solvents. Est of P. calidifontis showed higher hydrolytic activity towards esters with short to medium chains, with p-nitrophenyl caproate (C(6)) the best substrate among the p-nitrophenyl esters examined. As for the alcoholic moiety, the enzyme displayed esterase activity towards esters with both straight- and branched-chain alcohols. Most surprisingly, we found that this Est enzyme hydrolyzed the tertiary alcohol ester tert-butyl acetate, a feature very rare among previously reported lipolytic enzymes. The extreme stability against heat and organic solvents, along with its activity towards a tertiary alcohol ester, indicates a high potential for the Est of P. calidifontis in future applications.  相似文献   

13.
We found a tyrosinase, which has high activity in the presence of organic solvents, in the culture filtrate of Streptomyces sp. REN-21. The organic solvent resistant tyrosinase (OSRT) was purified from the culture filtrate by three column chromatographies. About 1.2 mg of purified OSRT was obtained from 5.6 liters of the culture filtrate with a yield of 26.0%. The purified enzyme had a single polypeptide chain with a molecular mass of about 32,000 Da. The optimum pH and temperature of OSRT were pH 7.0 and 35 degrees C using L-beta-(3,4-dihydroxyphenyl)alanine (L-DOPA) as substrate. OSRT showed stereospecificity toward L-, DL-, and D-enantiomers of DOPA or tyrosine. OSRT had 44% of the activity of the control even in the presence of 50% ethanol, while a mushroom tyrosinase showed only 6% activity under the same conditions. Moreover, OSRT retained its original activity even after 20 h of incubation at 30 degrees C in the presence of 30% ethanol.  相似文献   

14.
Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on a carboxymethylcellulose-coated chitin support via polyelectrolyte complex formation. The yield of immobilized protein was determined to be 72% and the enzyme retained 68% of the initial invertase activity. The optimum temperature for invertase was increased by 5 degrees C and its thermostability was enhanced by about 9 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 12.6-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The prepared biocatalyst retained 98% and 100% of the original catalytic activity after 10 cycles of reuse and 70 h of continuous operational regime in a packed bed reactor, respectively. The immobilized enzyme retained 95% of its activity after 50 days of storage at 37 degrees C.  相似文献   

15.
A Karmali  L R Santos 《Biochimie》1988,70(10):1373-1377
Peroxidase (Ec 1.11.1.7) was purified from needles of Pinus pinaster to apparent homogeneity by DE-52 cellulose chromatography with a final recovery of enzyme activity of about 85%. The purified enzyme (A402/A275 = 1.05) had a specific activity of about 948 U/mg of protein and ran as a single protein band both on SDS-PAGE and native PAGE with Mr of 37,000 and 151,000, respectively. Both native PAGE and isoelectric focusing gels of the purified enzyme were stained for activity which coincided with the protein band. The pI of the purified enzyme was found to be 3.2 by isoelectric focusing on an ultrathin polyacrylamide gel. The enzyme has an optimum pH of activity of 5.0 and temperature optimum of 30 degrees C. Stability studies of the enzyme as a function of pH and temperature suggest that it is most stable at pH 5.0 and 0-40 degrees C, respectively.  相似文献   

16.
A Penicillium simplicissimum strain has been found to produce an inducible extracellular lipase. Triolein was the best inducer for the enzyme production with the highest activity being achieved after 48 h of incubation. The purified lipase showed a molecular weight of 56,000 by SDS-PAGE. The enzyme exhibited a high ratio of apolar amino acids. The lipase was stable in the pH range of 5-7 and at 50 degrees C for 15 min. The optimum assay conditions were 37 degrees C and pH 5.0. The enzyme showed a high stability in water immiscible organic solvents. Lipase from P. simplicissimum is nonspecific and hydrolyses each of the three bonds of triacylglycerols.  相似文献   

17.
The oxidation of o-phenylenediamine catalyzed in anhydrous organic solvents by surfactant-laccase complex was investigated. The complex was prepared by utilizing a novel preparation technique in water-in-oil (W/O) emulsions. The surfactant-laccase complex effectively catalyzed the oxidation reaction in various dry organic solvents, while laccase, lyophilized from an aqueous buffer solution in which its activity was optimized, exhibited no catalytic activity in nonaqueous media. To optimize the preparation and reaction conditions for the surfactant-enzyme complexes, we examined the effects of pH in the water pool of W/O emulsions, the concentration of enzyme and surfactant at the preparation stage, and the nature of organic solvents at the reaction stage on the laccase activity in organic media. Surfactant-laccase complex showed a strong pH-dependent catalytic activity in organic media. Its optimum activity was obtained when the complex was prepared at a pH of about 3. Interestingly, native laccase in an aqueous buffer solution exhibited an optimum activity at the same pH of 3. The optimum preparation conditions of surfactant-laccase complex were [laccase] = 0.8 mg/mL and [surfactant] = 10 mM, and the complex showed the highest catalytic activity in toluene among nine anhydrous organic solvents. The effect of a cosolubilized mediator (1-hydroxybenzotriazole (HBT)) on the reaction was also investigated. The addition of HBT at the preparation stage of the enzyme complex did not accelerate the catalytic reaction because HBT was converted to an inactive benzotriazole (BT) by laccase. However, the addition of HBT at the reaction stage enhanced the catalytic performance by a factor of five compared to that without HBT.  相似文献   

18.
Ten strains of Bjerkandera adusta from the University of Alberta Microfungus Collection and Herbarium (UAMH) were compared for manganese peroxidase production. The enzyme from B. adusta UAMH 8258 was chosen for further study. After purification the enzyme showed a molecular weight of 43 kDa on 15% SDS-PAGE, 36.6 kDa on matrix-assisted laser desorption ionization-time of flight mass spectrometry, and an isoelectric point of 3.55. The N-terminal amino acid sequence was determined to be VAXPDGVNTATNAAXXALFA, and the amino acid composition showed no tyrosine residues in the enzyme. Manganese peroxidase exhibited both Mn(II)-dependent (optimum pH 5) and Mn(II)-independent activity (optimum pH 3). The purified enzyme was chemically modified with cyanuric chloride-activated methoxypolyethylene glycol to enhance its surface hydrophobicity. The modified and native enzymes showed similar catalytic properties in the oxidation of Mn(II) and other substrates such as 2,6-dimethoxylphenol, veratryl alcohol, guaiacol, and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonate). However, the modified enzyme showed greater resistance to denaturation by hydrogen peroxide and stability to organic solvents such as acetonitrile, N,N-dimethylformamide, tetrahydrofuran, methanol, and ethanol. The PEG-modified enzyme also showed greater stability to higher temperatures and lower pH than the native enzyme. Thus, chemical modification of manganese peroxidase from B. adusta increases its potential usefulness for applied studies. Received: 12 October 2001 / Accepted: 14 November 2001  相似文献   

19.
A novel gene coding for an endo-beta-1,4-mannanase (manA) from Bacillus subtilis strain G1 was cloned and overexpressed in P. pastoris GS115, and the enzyme was purified and characterized. The manA gene consisted of an open reading frame of 1,092 nucleotides, encoding a 364-aa protein, with a predicted molecular mass of 41 kDa. The beta-mannanase showed an identity of 90.2-92.9% (< or =95%) with the corresponding amino acid sequences from B. subtilis strains deposited in GenBank. The purified beta- mannanase was a monomeric protein on SDS-PAGE with a specific activity of 2,718 U/mg and identified by MALDITOF mass spectrometry. The recombinant beta-mannanase had an optimum temperature of 45 degrees C and optimum pH of 6.5. The enzyme was stable at temperatures up to 50 degrees C (for 8 h) and in the pH range of 5-9. EDTA and most tested metal ions showed a slightly to an obviously inhibitory effect on enzyme activity, whereas metal ions (Hg2+, Pb2+, and Co2+) substantially inhibited the recombinant beta-mannanase. The chemical additives including detergents (Triton X- 100, Tween 20, and SDS) and organic solvents (methanol, ethanol, n-butanol, and acetone) decreased the enzyme activity, and especially no enzyme activity was observed by addition of SDS at the concentrations of 0.25-1.0% (w/v) or n-butanol at the concentrations of 20-30% (v/v). These results suggested that the beta-mannanase expressed in P. pastoris could potentially be used as an additive in the feed for monogastric animals.  相似文献   

20.
The Fe(III) reductase activity was studied in the South African Fe(III)-reducing bacterium, Thermus scotoductus (SA-01). Fractionation studies revealed that the membrane as well as the soluble fraction contained NAD(P)H-dependent Fe(III) reductase activity. The membrane-associated enzyme was solubilized by KCl treatment and purified to electrophoretic homogeneity by hydrophobic interaction chromatography. A combination of ion-exchange and gel filtration chromatography was used to purify the soluble enzyme to apparent homogeneity. The molecular mass of the membrane-associated Fe(III) reductase was estimated to be 49 kDa, whereas the soluble Fe(III) reductase had an apparent molecular mass of 37 kDa. Optimum activity for the membrane-associated enzyme was observed at around 75 degrees C, whereas the soluble enzyme exhibited a temperature optimum at 60 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号